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Abstract—In a preceding paper (Brouwers and Chesters, /nt. J. Heat Mass Transfer 35, 1-11 (1992))
possible supersaturation in a film and in the bulk of a binary mixture has been discussed. In the present
analysis the exact conditions for fog formation and the magnitude of the fogging and superheated regions
in the film are first determined. Next, the governing equation of diffusion and energy (coupled with the
saturation condition) of the fog layer is solved numerically. An evaluation of various mixtures of water
vapour and air illustrates the substantial effect of fog formation on heat and mass transfer rates.
Subsequently, a thorough asymptotic analysis of the fog layer’s governing equation yields an excellently
matching approximation solution. Furthermore, this solution leads to analytical film model correction
factors for the combined effects of fog formation and injection/suction on transfer rates. Finally, the fog
film model is applied to channel flow of a binary mixture. This approach provides new procedures for the
computation of condensers and evaporators, allowing both fog formation in the film (affecting transfer

rates) and/or in the bulk (affecting the incremental balances of mass and energy).

1. INTRODUCTION

I~ THE film considered in the previous paper [1] fog
can be formed, if the temperature and vapour fraction
profiles cross the saturation line. The classical film
model analysis with resulting correction factors is then
no longer valid and applicable, since in the super-
saturated film the energy and diffusion equation are
altered.

Supersaturation in mixtures has been the subject of
many studies in the past, relevant contributions are
discussed briefly in the following. Piening [2] observed
no fog formation in slightly supersaturated clean air—
water vapour mixtures, owing to the absence of
foreign nuclei. Based on homogeneous nucleation at
a critical supersaturation level, numerous problems
concerning supersaturated gas mixtures have been
treated. Turkdogan [3] and Turkdogan and Mills [4]
introduced the ‘critical supersaturation model’ (CSM)
to describe the wall evaporation of metals into a
helium atmosphere. For the same purpose this CSM
has been employed and extended by Rosner [5], by
Rosner and Epstein [6] and Sekuli¢ [7] to model wall
condensation of water vapour in moist air, by Epstein
and Rosner [8] to investigate methyl alcohol evap-
oration into an air atmosphere, and by Hayashi et al.
[9, 10] to describe the naphthalene sublimation into
air.

In an early paper, Johnstone et al. [11] observed, if
sufficient foreign nuclei are present, that fog forma-
tion sets in as soon as supersaturation takes place.
Assuming no supersaturation to be possible, the so-
called saturation condition, they derived an erroneous
expression to investigate the conditions for fog for-
mation [12]. The saturation condition has been
employed fruitfully by Hills and Szekely [13, 14], Toor

[15, 16] and Aref ’yev and Averkiyev [17] to investigate
one-dimensional film systems. Forced convective wall
condensation of water vapour in air has been mod-
elled two-dimensionally by Hijikata and Mori [18],
Legay-Desesquelles and Prunet-Foch [19, 20], and
Hayashi et al. [21]. Free convective wall condensation
of water vapour in moist air has been studied suc-
cessfully with the saturation condition by Koch [22].

The central point of interest in all mentioned elab-
orations, except ref. [17], is the absence of a film
analysis including fog formation and an appreciable
induced velocity. But in a previous paper it was dem-
onstrated that in many practical situations the
induced velocity plays a role of major importance,
and that the basic film model approach is well suited
to account for this velocity [1]. In their original paper
Aref’yev and Averkiyev [17] presented a film analysis
of a mixture consisting of air and water vapour under
evaporation conditions. Saturated bulk conditions
and equal thermal and diffusional film thicknesses
were considered and hence the entire film was assumed
to be saturated. Their numerical results indicated the
significant effect of fog formation on heat and mass
transfer rates. However, superheated bulk conditions
and the possible existence of both superheated and
saturated regions in the film were not considered, nor
the application of the fog film model to channel flow.

In this paper therefore a complete film model analy-
sis is presented, whereby a superheated bulk and
unequal film thicknesses are allowed. First, the con-
ditions for fog formation are analysed thoroughly.
Subsequently, the existence and magnitude of super-
heated and saturated regions in the film are deter-
mined precisely, illustrating the role of the decisive
parameter Le, (it will be demonstrated that super-
heating in the film is possible for Le, <1, not-
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of the channel [m]

F saturation vapour mass fraction

G relation between ¢ and ¢ in superheated
region

Gom mass transfer coefficient [kg m=2s™']

H fog condition function, see equation (A4)

H, latent heat of condensation [J kg™']

hy heat transfer coefficient [W m~? K ']

K fog formation per unit volume

—3.-1

fkgm s
k thermal conductivity [W m~' K]
Le Lewis number, &/pc,D
modified Lewis number, k/pc, D
M mass of 1 kmol of substance [kg]
dimensionless fog formation, defined by
equation (30)
I mass flux at wall [kgm~?s7"]
m,  fog mass flux in film [kg m~?s~]
Nu  Nusselt number, 2,Dy,/k
P pressure [bar]
g heat flux at wall [W m~?
Sh Sherwood number, g,,D,/pD
t temperature [°C]

NOMENCLATURE
c vapour mass fraction u component of velocity in the direction of
c, specific heat [T kg™' K™ x [ms™!]
D diffusion coefficient [m*s~'] X coordinate [m]
D, hydraulic diameter ; four times the cross- Y dimensionless coordinate, y/d,
sectional area divided by the perimeter y coordinate [m].

Greek symbols
o film thickness [m]
Q correction factor
P density [kg m 3.

Subscripts
a border of saturated and superheated
region
b bulk
c diffusional
f fog
f1 pertaining to numerical fog film model

2 pertaining to asymptotic fog film modei
i interface

n non-condensables

t thermal

tot total

v vapour.
Superscripts

inv  inverse

mean fixed or ‘bulk’.

withstanding a saturated bulk). The governing equa-
tion of diffusion and energy in the fogging region,
coupled with the saturation condition, is first solved
numerically. The possible existence of both a satu-
rated and superheated region in the film, and the
effect of fog formation on heat and mass transfer,
is illustrated in various saturated air-water vapour
mixtures.

Next, an asymptotic analysis is carried out, yielding
an excellent approximate solution of the fog layer’s
governing non-linear equation. This solution supplies
reliable analytical expressions for the correction
factors, which are suitable for the dimensioning of
heat exchanging devices, such as condensers or evap-
orators. The application of the fog film model to chan-
nel flow is demonstrated in detail and illustrated by
means of a flow chart.

2. FILM ANALYSIS

In this section the heat and mass transfer in a film
as described in ref. [1] is analysed and extended to
include the possibility of fog formation. An elemen-
tary study of the vapour mass fraction and gas tem-
perature profiles in the film yield the exact cir-
cumstances needed for formation. The alternative

diffusion and energy equation, in the case of fog for-
mation coupled with the saturation condition, are
then derived and solved numerically. Correction fac-
tors are then introduced which will be compared in
the next section with the correction factors for the
conventional film model without fog formation.

The connection between the vapour concentration
c and the temperature ¢ in the film of a binary mixture
was derived in ref. [1} (‘equation (50)’). This curve
can be located such that it crosses the saturation line
F(¢) of the vapour. The possible intersection of G ()
and F(¢), enabling the formation of fog, is now exam-
ined by condensing the slope conditions

d‘F
dr

40
. dr

Ci_l

= Le,

[ hh—§

é, 1—¢,
X [exp {L;EVE In <~1~_%)} — 1] ()

for suction and, with a rearranged right-hand side

drF
dt

, 46
. de

4, ©, ¢, —c;
f, 50 ®r h—§

@

for injection. In equation (2) the conventional film
model correction factors have been inserted [1]. When
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equations (1) and (2) are not satisfied, the curve G (¢)
is situated entirely in the superheated region, and no
fog will be formed. Consequently, the classical film
model corrections remain valid. However, when these
requirements are not satisfied, the curve G (¢) inter-
sects the saturation line. Assuming no supersaturation
to be possible, fog will then be formed in part, or all
of the film. The use and limitation of criteria (1) and
(2) are discussed in detail in ref. [23]. The film, super-
heated and/or saturated, is analysed below.

The first step is to divide the film into a fog or
saturated layer (0 < y € 4,) and a superheated layer
(0, <y <o, or 4,). The fog layer thickness J, lies
between zero (i.e. no fog formation) and 4§, or 4,
when the entire film is saturated. But §, is at present
unknown and will be determined later on. Plural satu-
rated and superheated regions in the film have been
excluded implicitly, though it is demonstrated in ref.
[23] that this feature cannot be proved mathematically
for Le, < 1. Secondly, at the boundary of the super-
heated and saturated regions the temperature is
denoted by

t(y = 68) =1 (3)

and the vapour mass fraction must obey the require-
ment

4)

The vapour mass fraction up to and including the
boundary of the saturated region is related to the
temperature by the saturation condition

c(y=8.)=c,.

c=F(1) (4<1<1,).

®)

This so-called saturation condition has been utilized

8, =3,

1

c=0q,

t—1t

t—1,
5, <6 C=G(t)=1+(Ca_l)(F{:[exp{k\,(é[—éa

l_Cb Le.,
" (T—c)} N l} “) (

in view of its convenience and accuracy to most prac-
tical situations.

In the analysis of the fog layer the droplets created
(and transported, e.g. by thermophoresis) are not
explicitly considered and the physical properties in
the superheated and saturated mixture are therefore
assumed to be identical. This approach is quite accept-
able since the fraction of droplets in mixtures is usually
very small.

In the superheated region the diffusion equation
and induced velocity of ref. [1] are still valid. Solving
this equation with the appropriate boundary con-
ditions (4) and c(y = 4,) = ¢, yields

)_6"1 l—c
) =1-(-c)exp {;,_5 1“<1~ch>}

(0. Sy <)

(6

The temperature distribution is obtained by solving
the energy equation of the film with application of
boundary condition (3) and the value of #(y = §,) =
t,, resulting in the temperature profile

wy) = (t,—1.)

y_éa 1 l—cb 1
exp Lev(éz-_éa) i ]_Ca

8,=8,
P le6. =00 "

M

Eliminating (y—4,)/(.—9,) from equations (6) and
(7) results in the following relation between ¢ and ¢ in
the superheated region:

N

L Sty =19.))

(t(y=38)<1<1t)

s 1 - o
0. =0d,:c=G() = 1+(C"‘_])<t _:—[exp {Le 1n<1_?’>}—1]+1) (L. <t<y)
b a v a

0,—0,

5( > (S,
¢ is not a function of ¢ for §, <y <4,

frequently in the past, as discussed in the Intro-
duction. The saturation condition holds in general
when sufficient particles are present in the mixture
which can serve as nuclei for condensation. According
to Steinmeyer [24] these conditions are indeed often
fulfilled in practical situations. The level of super-
saturation, which thermodynamically must always be
non-zero, can then be considered as negligibly small.
Moreover, for the analysis it is in fact not relevant
which relation between ¢ and ¢ in the fog region is
selected, which is to say that F () can also be the result
of a CSM, here the saturation condition is employed

1—¢, v
()] )

c=G() =1+(c,—1) (,tb__t, [e"p {Le (6.~

(t. <1< 1)

®

For 6, =0 (i.e. t, = f; and ¢, = ¢;) solutions (6)—(8)
reduce to the solutions of the convectional film [1].

At the boundary of the saturated and superheated
region the concentration and temperature (and physi-
cal properties) are continuous, as are the energy and
mass flux

dr
dep o _ 4
dyl,-s, dy

saturated
region

®

y=2,
superheated
region
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oD de| oD de
l—cdy }.:53— l—cdy

saturated
region

(10

y=39,
superheated
region

The temperature and vapour concentration in the
superheated region are already known, see equations
(6) and (7), but in the saturated region they have yet
to be determined. However, in the saturated region
the concentration and temperature are coupled by the
saturation function (5). Combining equations (9) and
(10) to eliminate the y-dependence and applying equa-
tions (5) and (8) yields as tangency condition

dF

_dG
dt

. de

c,—1

Le
Yt —t,

Iy

8,—9,

l—¢y
x l:exp {Lev(él»—(su) In (1 —Q.)} - 1:|. (11)

Equation (11) prescribes continuity of the first deriva-
tive de/d¢ as given by equation (8) in the superheated
region and by equation (5) in the fog layer. Additional
information about the use and features of equation
(11) is given in ref. [23]. Equation (11) contains two
unknowns, namely ¢, and J, (since c, = F(¢,)). In
order to derive a second equation with both unknowns
and to complete the analysis of the film, attention is
now focused on the fog layer next to the wall
(0<y<3d,).

In the fog layer vapour disappears by spontaneous
condensation and as a result of the droplet formation
latent heat is liberated. In this layer the energy and
diffusion equation read

d*t pDe,, dc g

— — — = —H, 12

kdy2 l1—c¢ dydy wk 12
d’¢c  pD dc dc

— —_— e —— = — 13

p dy? " l—cdydy k=9 (13

with as respective boundary conditions #(y = 0) = ¢,
and equation (3), and ¢(y = 0) = ¢; and equation (4).
In equations (12) and (13) K represents the mass of fog
formed in the mixture per unit volume. Eliminating K
from these equations produces

d*r din(l—¢)dt H, d*In(1—¢)

Le, 4, & Ao, (14)
This equation is an ordinary non-linear second-order
differential equation in 7 with respect to the coordinate
v, since ¢ is expressed by the saturation equation (5)
as a function of r. As a soiution in closed form is
not possible, the boundary value problem (14), with
boundary conditions #(y = 0) = ¢, and equation (3), is
solved numerically with a standard shooting method.
Detailed information about this solution technique is
found in Hall and Watt [25]. In order to prepare
equation (14) for this solution method, the dimen-
sionless variable

Y= (15)

&=

is substituted into equation (14). By this substitution
equation (14) remains in exactly the same form, but
the domain of integration is transformed into
0<Y<1.

The second equation containing ¢, and J, is now
obtained by combining the numerical solution of
equation (14), and equations (7), (9) and (15)

X

(16)

8, —0, | l—¢, :
P e, 6.—6) “\i—c )~

The combined iteration of equations (11) and (16)
yields d, and ¢,. To employ this simultaneous iteration
the boundary problem (14) has to be solved for every
value of ¢, during the iteration. To decouple both
equations and reduce the computational effort, the
equality d, = 0, could from now on be supposed to be
valid. Rather than setting Nu = Sh, though it
is acceptable for many transfer processes, the magni-
tude of the term (6,—3,)/(d.—4,) is evaluated in the
following.

In the case in which no fog is formed in the film, so
that K is identically zero in equation (13), the vapour
mass fraction, ¢,, at location y = g, is given by

.  In(l-¢)-In(l—c)
5,-8, In(l—cy)—In(1—c,)

a7

since then In (1 —c¢) depends linearly on y in both the
saturated and superheated region. If equation (17) is
supposed to be valid when fog is present and is
inserted into equation (11), 8, is eliminated from the
right-hand sides of equations (11) and (16). Hence,
equation (11) produces readily r,, and with this ¢,
equation (14) is solved, and with the numerical solu-
tion J, i1s obtained explicitly from equation (16). A
similar simplification follows in fact from inserting
é, = 4., as discussed above.

However, equation (17) is only an approximation
when K # 0 and the error involved by assuming equa-
tion (17) has to be assessed. The amount of formed
fog has been derived in the Appendix. It has further-
more been discussed in ref. [23] that the amount of
fog produced is greatest where the temperature of
the fog layer is lowest. For evaporation this tem-
perature corresponds to z,, while for condensation
this temperature is found at the interface, thus ¢ = ¢,.
Equation (17) is violated the most if this maximum
value of K is supposed to apply throughout the entire
fog region. Integrating equation (13) twice with
respect to y, and application of boundary conditions
¢(y = 0) = ¢; and equation (4) then yields
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2 1-—
In(l—e() = —%p<(5yf) + (111(1_?) +5P>§

+In(l-c) O<y<d) (18)
where p follows from equations (15) and (A3)

5,2
P="D
Lo 1) 1dF2+L 1 d*F
Le—D\TZF & “TFAe [q)
- H, 1 dF dy/)”
Le"+c |—Fdr

v

19

The relation between film thicknesses and vapour frac-

tion follows from combining equations (6), (10) and
(18), yielding

o, _In(l-¢)-In(1-¢)

5,—6, In(l—c¢)—In(1—c,)

(I+¢) (20)

with

_ p
T In(l—c¢)—In(1—¢)

N—

&

@n

as a measure of the error occasioned by assuming equa-
tion (17). Equation (17) is rewritten as

5,—5a_l+ é—l In(l-¢,)—In(l1—¢)
8. —90, 4, In(l—cp,)—In(l1—¢,)’

(22)

For wall evaporation the actual effect of 8, +# 4, is greater
than expressed by this equation and equation (17), as
& > 0, while for condensation equations (17) and (22)
exaggerate this effect, since then ¢ < 0. However, equa-
tion (22) reckons to some extent with unequal thermal
and diffusional film thicknesses, while its application
decouples equations (11) and (16) and therefore reduces
the computational effort. From now on ¢ is therefore
considered to be zero, the actual magnitude of ¢ is
assessed in the next section for some practical situations.

The correction factors of heat and mass transfer
will now be derived. With equation (15) the trans-
ferred heat is written as

k dt

nga’ (23)

Y=0

Comparing equation (23) with the heat flux in a film
without fog and without induced velocity, yields as
correction factor

é, dt
o, = 2 ¥lr=o (24)
T e—t)
Combining the mass flux from gas to wall and equa-
tion (5) results in

de
44y

pD dF

M= F@) dr (25)

y=0

Application of equations (15) and (25) results in the
following correction factor for diffusion :

o, dF| dt

b, dr}, dY]y_y

@l-.f = —(Cb—_—a)““ - (26)

The gradient of temperature at ¥ = 0, appearing in
equations (23), (24) and (26), follows from the
numerical solution of equation (14). It can easily be
verified that in general between the fog correction
factors for mass and heat transfer, ®., and @,
respectively, the following relation exists:

2

. Eer,f

_ =t dF
T op—c dt

0., @7

owing to the saturation condition (5) in the fog layer.

An additional interesting property which can be
determined with the numerical solution of the com-
bined energy and diffusion equation (14) is the
amount of fog formed in the saturated layer

LA
m; = J‘ Kdy.
b=0

(28)

Applying equations (12) and (15), equation (28) yields

k [dt

ok fdt dr
"= 16, \dY

r—o dY

Y=1

1 (" 1 de dt
Le, L_OT-Z deYdY)' @9)
The first derivatives of ¢ with respect to Y in Y =10
and follow from the numerical solution of equation
(14); this solution is also employed to calculate
numerically the integral in equation (29) with
Simpson’s rule.

The amount of fog formed, represented by equation
(28), is the same for evaporation and condensation,
which is explained as follows. Equation (14) remains
in the same form when y is replaced by the coordinate
d,—y, only boundary conditions #(y = 0) = ¢, and (3)
being exchanged. In other words, evaporation con-
ditions become condensation conditions, or vice
versa. The solution of equation (14) with exchanged
boundary conditions is therefore the reflection of the
original equation’s solution in the line y = 0.53,,
hence t(y) curves for evaporation and condensation
are symmetrical with respect to the line y = 0.53,.
A similar consideration of equations (28) and (13)
provides evidence that the amount of fog formed for
condensation and evaporation is positive and equal.

A complete analysis has been given in this section
of a film with possible formation of fog. Equation (1)
or (2) serves to examine whether fog is formed ; when
this is the case tangency condition (11), combined
with approximation (22), provides the boundary of
the saturated and superheated regions (z,, ¢,). Ulti-
mately, the numerical solution of the governing equa-
tion (14) provides the temperature and coupled
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vapour concentration in the saturated region, yielding
the fog layer’s thickness (16), the correction factors
(24) and (26), and the quantity of fog formed (29).

3. RESULTS OF NUMERICAL SOLUTION

The influence of fog formation on heat and mass
transfer will be greatest when the entire film is satu-
rated. That is to say, when the bulk temperature z,
and bulk vapour fraction ¢, are situated on the satu-
ration line. In a condenser or evaporator this con-
dition corresponds to a saturated mixture entering
and flowing through a channel. To indicate the effect
of fog formation results are presented based on the
model derived in the previous section. As an example,
saturated air—water vapour mixtures at low tem-
peratures and vapour mass fractions are considered,
as well as saturated mixtures at high temperatures and
vapour fractions. Both mixtures are examined under
condensation conditions, thus ¢, > ¢;, and equal ther-
mal and diffusion film thicknesses. The former con-
ditions are for instance found in air-conditioning
devices, while the latter are typical of condensers.

For the first case considered, (z;, ¢;) is set equal to
(20°C, 0.0144) ; this point is situated on the saturation
line of an air—water vapour mixture under atmo-
spheric conditions, as derived in the Appendix. The
bulk values (1, ¢;,) are successively set equal to (30°C,
0.0264) and (60°C, 0.1318), all situated on the same
saturation function. The latent to specific heat ratio
H\./c,, of water vapour is set equal to 1200 K. Cal-
culations are carried out for Le, = 0.5, 0.75, 1 and
1.25.

Evaluating equation (11) showed that for all cases
the entire film is fogged, thus 8, =4, =4, and (1,
¢,) = (1, ¢,). Substituting the greatest #, in equation
(A4) produces as maximum H(t, = 60°C) = 0.13,
which is well below the smallest Le,, namely Le, = 0.5.
The aforesaid values assure that Le, > H(z) in all
considered fogging films, which is a condition for
K > 0, see the Appendix. In Table 1 the correction
factors according to equations (24) and (26), com-
pared with the conventional correction factors, are
listed. In this table the dimensionless fog formation is
also inserted
51melat

M= =1

(30)

H. J. H. BROUWERS

This number is the ratio of transported sensible heat
(heat transferred by conduction) through the film, in
the case of no fog formation and no induced velocity,
to created latent heat in the film by fog formation and
in the presence of an induced velocity.

The large deviation of the correction factor ratios
from unity illustrates the substantial influence of
fog formation on both heat and mass transfer. The
sensible heat transfer ratio is larger than unity, which
would be expected since spontaneous condensation in
the film causes extra sensible heat generation. This
condensation is at the expense of the diffusional
vapour transport from bulk to wall. Indeed the ratio of
the diffusion correction factors is smaller than unity.
For small vapour mass fractions, the latent (this is
heat transferred by transport of vapour and liberation
of latent heat) and sensible heat transfer in a heat
exchanger are of the same magnitude. Because both
kinds of heat transfer are seriously affected by fog
formation, it is interesting to calculate the total
amount of transferred latent and sensible heat from
film to wall:

@31

for the classical film model and fog film model. In
Table 1 the ratio of g, according to the numerical
solution and according to the conventional film model
is listed. All tabled values are close to unity, implying
the total amount of transported heat is hardly altered
by fog formation, only the contribution of latent and
sensible heat is different. Toor [15] derived analytically
that in a film without induced velocity, 1 —¢; = 1 and
Le = 1, the ratio of transferred heat is exactly equal
to unity. As the physical situations of Table 1 are
similar, one can conclude that the numerically
obtained ratios are in agreement with the aforesaid
analytical result.

The maximum error introduced by assumption (17)
(or equivalently equation (22)) is listed in Table 1, ¢
being defined by equation (21). The error increases
with increasing fog formation levels, which might be
expected, but remains within an acceptable magnitude
for realistic conditions (the upper ones of Table 1).

For the second group of calculations (¢, ¢;) is set
equal to (94.81°C, 0.75), and the bulk values (#, ¢;)
equal to (97.63°C, 0.875) and (99.90°C, 0.995). All
points are again situated on the saturation line of an

Frot = CI+"'1H|M

Table 1. Results of the numerical solution for (f, ¢;) = (20°C, 0.0144), 3,/5, = 6,/d, = 1
for all cases

Le, ©,.1/0, ©./0, Mrl Mn Grot.11 /G0t €]
t, = 30°C 0.50 1.218 0.924 0.391  0.393 1.000 0.096
¢, = 0.0264 0.75 1.192 0.901 0.350 0.352 1.000 0.120
1.00 1.170 0.883 0.316 0.317 1.000 0.136
1.25 1.153 0.868 0.288 0.289 1.000 0.148
t, = 60°C 0.50 1.418 0.791 2.050  2.091 1.002 0.736
¢, = 0.1318 0.75 1.301 0.723 1.883 1919 1.001 0.805
1.00 1.180 0.671 1.731 1.762 1.001 0.819
1.25 1.073 0.630 1.601 1.629 1.000 0.810
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Table 2. Results of the numerical solution for (£, ¢;) = (94.81°C, 0.75)

Le, ©,:/0, ©.n/O. My My 3,/6, Goun /G H(L)
t, =97.63°C 0.80 1.019 0.999 0.031 0.026 037 1.000 0.77
¢, = 0.875 0.90 1.062 0.999 0.121  0.121 1.00 1.000 0.84
1.00 1.098 0.999 0.198 0.198 1.00 1.000 0.84
1.10 1.129 0.999 0.261 0.261 1.00 1.001 0.84
t, = 99.90°C 0.80 1.000 1.000 0.000 0.000 0.00 1.000 0.71
¢, = 0.995 0.90 1.080 0.999 0.356 0346 0.14 1.000 0.82
1.00 1.191 0.999 0.778  0.780 1.00 1.000 0.99
1.10 1.298 0.998 0.132  1.135 1.00 1.000 0.99
air-water vapour mixture. These temperatures and 1
concentrations are relevant to condensers. The cal- Fit)
culations are carried out for Le, = 0.8, 0.9, 1 and supersaturated 74
1.1, the same latent to specific heat ratio, and equal - /
thermal and diffusion film thicknesses. The valuesof L s
Le, are different from those of the previous set of ‘f &,’0.5_ LG“)' Le, =09
calculations since an evaluation of equation (1) indi- ©|d& // Glo). Le, =08
cated that for all afore-mentioned condenser con- 7
ditions and Le, = 0.5 and 0.75, fog is not formed at | superheated
all. For these small Le, values the convex curve G (?)
is entirely situated in the superheated region. Thus, el
although the interface and bulk properties are both 0 0.5 1
situated on the saturation line, fog is not formed. tt_t;
b T Y

Consequently, the conventional correction factors of
ref. [1] retain their validity for these cases.

In Table 2 the calculated correction factor ratios
and dimensionless fog formation levels are listed for
the cases considered. As for some cases the film is now
partly or even entirely superheated, the dimensionless
fog layer thickness 8,/9, is also included in this table,
0<4,/6.=9,/6, < 1. In Fig. 1 the determined tem-
perature and concentration profiles in the film, with
y as parameter, for Le, = 0.8 and 0.9 are drawn as
examples. For Le, = 0.8 the curve G(¢) is situated
in the superheated region, as correctly predicted by
equation (1). According to this equation fog is formed
for Le, = 0.9. With equation (11) the border of the
superheated region (z,, ¢,) has been determined. In
Fig. 1 the continuity of the first derivative dc/dr at the
boundary between saturated and superheated zones
is evident. In Table 2 or Fig. 1 it can be seen that
for the examined situations the film can be entirely
superheated, partly superheated and saturated, or
entirely saturated. The correction factor ratios for
heat and mass transfer differ most from unity, of
course, when the entire film is saturated. For Le, > 1
the entire film is always saturated when the bulk is
saturated. This feature of the film for Le, = 1 was
employed implicitly by Arei’yev and Averkiyev [17]
and is explained in ref. [23]. In Table 2 H(¢,) has been
included, see equation (A4), with ¢, = ¢ substituted
for a superheated film and ¢, = ¢, for an entirely satu-
rated film. One can readily see that the maximum
H(1,) of the film is smaller than Le, for all cases
examined, thus K > 0 is assumed. In ref. [23] it is
deduced that ¢, is always such that H(z,) < Le, is
fulfilled.

F1G. 1. Behaviour of vapour concentration and temperature
in the film with respect to the saturation line, (¢, ¢) =
(94.81°C, 0.75) and (1, ¢,) = (99.90°C, 0.995).

A glance at the total transferred heat and the
diffusion correction factor ratios shows that these are
now both nearly unity, even for completely saturated
films. This means that fog formation does not seri-
ously affect the vapour diffusion and latent heat trans-
fer in condensers. In condensers, however, the main
part of transferred heat is latent heat; Sparrow et al.
[26], for example, demonstrated that the sensible heat
transfer is negligibly small because the temperature
difference between wall and bulk is very small. As
the diffusional mass transfer is hardly altered by fog
formation, not only will the overall heat transfer in a
condenser be the same in the case of fog formation,
but also the dominant latent mode of heat transfer
will remain the same. Or in other words, for condenser
calculations the conventional film model will predict
heat and mass transfer rates sufficiently accurately,
with or without fog formation.

The relatively unimportant effect of fog formation
in condensers is once more illustrated by the small
amount of fog formed, see M, in Table 2. One must
be aware when the actual amount of fog formed is
considered, that the temperature differences (f,—#)
pertaining to Table 1 are much larger than those per-
taining to Table 2. As the maximum introduced error
¢, which is correlated with K and w1, is also much
smaller for the physical situations studied here, it has
not been listed in Table 2.
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In the analysis of the previous section no attention
has been paid to the film momentum equation in the
case of fog formation, nor has there been derived a
correction factor for friction in a fogged film. The
correction for suction or injection is only of import-
ance when the vapour mass fractions are large. The
calculation of diffusional mass transfer in the case of
fog formation has shown that the diffusion profile in
the film is significantly altered only for small vapour
mass fractions. But for small vapour mass fractions
the mass flux as such is small and thus the friction
correction factor close to unity. For large vapour frac-
tions the correction becomes important, but for this
case the concentration profile, and pertaining mass
flux, is nearly unchanged by fogging. Accordingly, the
author confines himself by suggesting a substitution
of the mass flux in the conventional correction factor
will be a good approximation of the true friction cor-
rection factor. The substituted mass flux may be cal-
culated by either the classical or the fog film model.

4. ASYMPTOTIC APPROXIMATION SOLUTION

In the previous section the coupled energy and
diffusion equation (14) of the fog layer has been solved
numerically. To this end, a standard shooting method
was employed to solve the boundary value problem.
This numerical method consists of a combined inte-
gration and iteration routine to find a solution which
satisfies both boundary conditions of ¢ at y = 0 and
d,. In the context of an operating heat exchanger ¢
and ¢; = F(t;) have to be calculated iteratively, since
the interface temperature and concentration in an
evaporator or condenser have to obey a local energy
balance, and are not known a priori. The coupled
application of an iteration for #, and a shooting
method to solve equation (14) for each cycle of this
iteration, yields long computation times. The deri-
vation of an asymptotic approximate solution of
equation (14) is therefore desirable and this is pre-
sented in this section.

In order to derive an approximate solution of equa-
tion (14), an assessment of the order of magnitude of
the diverse terms is first carried out. For small vapour
mass fractions the first term on the left-hand side of
equation (14) is of about the same magnitude as the
term on the right-hand side. The latter is of import-
ance because, even for small ¢, this term is large by
virtue of the presence of the latent specific heat ratio.
This becomes evident when the typical values appear-
ing in Table 1 are considered and one realizes that Le,
is of the order of unity and H,,/c,, 1s of the order of
120-1200 K for most vapours. The second and non-
linear term on the left-hand side is very small when
compared with the two aforesaid terms of equation
(14). For large vapour mass fractions (see Table 2 for
typical values of ¢ and ¢) the term on the right-hand
side completely dominates both of the other terms in
equation (14). Thus again, the non-linear term plays
no role of importance.

The considerations of small and large vapour con-
centrations yield the relative unimportance of the
second and non-linear term on the left-hand side of
equation (14). Evaluating the equation without this
non-linear term indeed yields a promising agreement
between the reduced solution and the complete
numerical solution of equation (14). Yet, a much
better agreement is obtained by assessing the con-
tribution of this term to the complete solution.

The non-linear term only becomes of some import-
ance for large vapour fractions, when it exceeds the
other term on the left-hand side of equation (14). But
again it must be stressed that under these cir-
cumstances both terms are small in comparison with
the term on the right-hand side of the equation. Math-
ematically, then, for large vapour fractions the solu-
tion of

d’In(1—¢) 0 1
TR (32)
accurately approximates the complete solution of
equation (14). Integration of equation (32) and appli-
cation of the boundary conditions at the interface and
equation (4) yields

c(y) = 1= (1—c)exp {;m (tj)} O<y<3d,).
(33)

This solution for the saturated layer, combined with
solution (6) for the superheated layer, corresponds
exactly to the undisturbed diffusion profile of a film
without fog formation {1]. This is the reason that for
large vapour fractions the conventional diffusional
correction factor without fog almost coincides with
that of the film model with fog, as confirmed by the
numerical results listed in Table 2.

To obtain a higher order approximate solution of
equation (14), the zero-order solution (33) is sub-
stituted in the non-linear term of equation (14)

Le

d 1 (l—cb\)dt_fl_,aldzln(l—c). 34)

T T N Ry TR
The asymptotic solution (33) has been substituted
in the non-linear term since only for large vapour
fractions this term becomes of some importance. For
small vapour fractions this term is still dominated by
both of the other terms appearing in equation (14) or
(34). Equation (34) is integrated twice with respect

toy

1 (1=c\ [*
Leyt(y) = 5-In{ 7 0y
a i y=

H,
= Elln(l —c(N+K y+K, O0<y<4).

PV

(33

Applying the boundary conditions at the interface and
equations (3) and (4) yields the integration constants
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Le,(t,—t) 1 I—c¢,
K== ’5ﬂ“(1—q

Hlal ljéa >
X + = td 36
(CN 5o )oY (36)

37

and

Hlal
K,=Le, t,— . In(1—-¢).

Py

The integral appearing in equation (36) is assessed
with the help of the zero-order solution (33). This

(to—1)In (l‘cb)
1—-¢,
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Substitution of equation (39) into equation (36) now
yields

(ta_ti)

il l—c,
5. 6. "\1=¢

y (H“ L l=e) =40 —ca)). “0)

Cpv C,— ¢

K, = (Le,—1)

A complete approximate solution (35), combined with
equations (37) and (40), of equation (14) has now
been realized. The dimensionless fog layer thickness
is obtained by combining equations (5), (7), (9), (22),
(35) and (40)

Ev 1 | I—Ci + 51 1 ]—Cb
exp Le, f l—e¢, Le,d, n 1—¢

)i

Hlal 1 d_l;‘
Coy 1—c, dt

(s

)

X

equation constitutes an expression for ¢ as a function
of y, while ¢ as a function of y is needed to solve the
integral. In the fog layer, however, ¢ is determined by
the saturation function (5) as a function of ¢, and
conversely, ¢ is a known function of ¢. However,
in general this relation permits no further analytic
treatment of the integral. As a compromise, therefore,
the saturation line in the saturated region is now
roughly approximated as a straight line between

l_ca Hlat
(Lev—l)(ta—ti)—]n<1_Ci)<c 4+

i PV Ca—

(41)

The thermal correction factor follows from equations
(15) and (24)

Oun=—"7—7 (42)

The first derivative of ¢ with respect to y at the wall,
according to the approximate solution, is determined
with the help of equations (5), (35) and (40)

ta(l—ci)—la(lla)>

dz ) v Ca— G
b—| =+ E (43)
dy y=0 53 Hlat 1 dF
Le,+ -2 — ==
Gy 1—¢ dt|,
The dimensionless fog layer thickness in this equation
(&, ¢} and (4, ¢,) is given by equation (41). The diffusional correction
e factor pertaining to the approximate solution can
t=F"™(c) ~ ‘G (t,—t)+14 (. <c<e). easily be obtained by combining equations (27) and
Cy— G

(38)

In equation (38) for ¢ the zero-order solution (33) is
again substituted and the integral in equation (36) is
solved analytically as follows :

_ ta(l —ci)—ti(l _Ca)

1 {%

— tdy = R

6J 7 c—c <l—ca>
In

42)

dF
“dt

of ™

ﬂ
wdy

(eo—c;)

y=0

(44)

The amount of fog formed is determined by equations
(13) and (28)

din(1—c¢
mf:pD( fi,v !

_ din(1—¢)
dy

) . (45)
y =3,

v=0
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This equation, combined with equations (35) and
(36), is written as

k dt
(%y

dr
_515

My =
Hlalél

y=0 y =38,

6, (&

—t)

The first derivative of 7 in y = 0 in equation (46)
follows from equation (43), the first derivative in
y = 0, is calculated by combining equations (5), (35)
and (40)

1—
1—¢

Ca
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and 2, respectively. To determine the boundary of
saturation (z,, ¢,), equation (11) has again been
employed, again, of course, yielding identical (z,, c,)
and H(1,) for all cases examined.

A comparison of all values listed in Tables 14,
shows the maximum discrepancy between numerical
and approximate solutions is of about a few per

1—¢\(H, L(—e)—t(1—c,
(Lev~1)(ta—ri)—1n< ”) w_, q ollza) =6l -a)
dt . 1=a/\éw Q7o (47)
"dyl,-s 0. H, 1| dF '
Le,+ -
Cpy 1—0c, di |,

The dimensionless fog layer thickness appearing in
equations (43), (46) and (47) follows from equation
(41).

5. RESULTS OF ASYMPTOTIC SOLUTION

In this section similar calculations to those pre-
sented in Section 3 are carried out to compare the
predictions of the asymptotic approximate solution
with those of the complete numerical solution. In
Tables 3 and 4 the results of these calculations are
listed which correspond with the computational
results of the complete model, as listed in Tables 1

mille. Even for the largest difference between (¢, c;)
and (1, ¢, ), the agreement is still very good. This large
difference belongs to unrealistically large sensible and
latent heat fluxes from gas to wall. It will therefore not
be found in ordinary heat exchangers or condensers, it
has only been selected to create some deviation
between the numerical and approximate solutions.
One can furthermore conclude from Tables 1 and
3 that the error decreases with increasing Le,. For
larger Le, the first term on the left-hand side of equa-
tion (14) gains importance and dominates more the
second term, resulting in a smaller deviation. For
small vapour fractions it is namely important for the

Table 3. Results of the approximate solution for (4, ¢;) = (20°C,0.0144),6,/6. = 3,/3, = |
for all cases

Le, ©,r/0, 0, /0, M, ATlfz o2/ Gror &}
t, = 30°C 0.50 1.218 0.924 0.391 0.393 1.000 0.096
¢, = 0.0264 0.75 1.192 0.901 0.350 0.352 1.000 0.120
1.00 1.170 0.883 0.316 0.317 1.000 0.136
1.25 1.153 0.868 0.288  0.289 1.000 0.148
t, = 60°C 0.50 2411 0.789 2.035 2.068 0.999 0.736
¢ = 0.1318 0.75 2.297 0.721 1.871 1915 0.999 0.802
1.00 2177 0.670 1.722  1.760 1.000 0.817
1.25 2.071 0.629 1.594  1.627 1.000 0.809

Table 4. Results of the approximate solution for (1, ¢;) = (94.81°C, 0.75)

Le, 0, 1,/O, 0./0. M, A’T[fz 8,/8, Gror.e2/Gior H(t,)
t, = 97.63°C 0.80 1.019 0.999 0.031 0.026 0.37 1.000 0.77
¢, = 0.875 0.90 1.062 0.999 0.121  0.121 1.00 1.000 0.84
1.00 1.098 0.999 0.198  0.198 1.00 1.000 0.84
1.10 1.129 0.999 0.261  0.261 1.00 1.000 0.84
1, = 99.90°C 0.80 1.000 1.000 0.000  0.000 0.00 1.000 0.71
¢, = 0.995 0.90 1.080 0.999 0.356 0.346 0.14 1.000 0.82
1.00 1.191 0.999 0.777  0.780 1.00 1.000 0.99
1.10 1.298 0.998 0.130 1.135 1.00 1.000

0.99
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approximation to be accurate that both Le, and
Hy,/c,, are large. For large vapour mass fractions
however, the error slightly increases with larger Le,,
see Tables 2 and 4. For these physical situations it is
important that H,,/c,. is large and consequently the
right-hand side of equation (14) dominates both terms
on the left-hand side.

The approximation is based on the fact that H,,/c,,
is large. For water vapour this ratio is close to
1200 K, but for a lot of other vapours it is a factor
of 10 smaller. A repetition of all calculations, with
H,/c,, =120 K and all other values unchanged, indi-
cated however that the approximation solution is still
correct within a few per cent. Since this error is quite
acceptable, the approximate solution is not only appli-
cable to water vapour, but to most other vapours as
well.

In Tables 14 only results pertinent to conditions
found in air-conditioning devices and condensers have
been listed. Computations carried out for inter-
mediate vapour fractions and temperatures, for
instance found in exhaust gases from dryers, indicate
that the agreement is of the same high level as in the
cases studied in detail here. Furthermore, since the
temperature as a function of y in the fog layer has been
found to be similar for evaporation and condensation,

t(x), e(x)

the approximation is applicable to evaporation pro-
cesses as well.

6. APPLICATION OF THE FOG FILM MODEL
TO CHANNEL FLOW

In preceding sections the conditions have been dis-
cussed under which fog formation in the film occurs
and modified correction factors derived. In this sec-
tion the use of this extended film model is demon-
strated. This model includes the possibility that the
bulk propertics move to enter the supersaturated
region and that, as a result, bulk fog is created. Similar
to the conventional film model, here the bulk values
t, and ¢, are taken to be sufficiently approximated by
the mixed mean values of these quantities in a cross-
section. A flow chart, drawn in Fig. 2, illustrates the
procedure followed.

6.1. Determination of interface conditions (t;, c;)

In evaporators or condensers the interface tem-
perature ¢ and associated vapour mass fraction ¢
(= F(1)) are determined by a local energy balance. The
net latent and sensible heat flux from or to an interface
must be zero, the fluxes on the gas side being given by
the conventional film model corrections for heat and

(t ¢;) with ©

and G)t

eq. (1) Y (t,; ¢,) with (t;, ¢;) with
or eq. (2) eq. (11) and eq. (22) O.5and ©, ;
N

|

mi=0

¢ + dc with eq. (53)

T+ di with eq. (54)

N %X +dx =end

of channel

Y

END

M; with eq. (56)

¢ + dc with eq. (53)
T + dt with eq. (54)

Fi1G. 2. Flow chart of the applied fog fitm model.
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mass transfer. Once ¢ has been obtained, equation (1)
or equation (2) for suction or injection, respectively,
is employed to determine whether the vapour con-
centration/temperature line G(¢) is located in the
supersaturated region. These conventional film model
expressions are based on the assumption of no inter-
section of this relation with the saturation line. If
this proves indeed to be the case, the ¢, and fluxes
calculated, according to equation (1) or (2), are cor-
rect and the amount of fog formed in the film is equal
to zero.

If, on the other hand, an intersection between equa-
tion G(¢) and the saturation line is detected, an alter-
native procedure has to be followed. First, the tem-
perature and vapour concentration (Z,, ¢,) on the
boundary of the saturated and superheated region is
determined numerically with the help of equations
(11) and (22). By employing a local energy balance, ¢;
is then re-determined. But during this iterative pro-
cedure now the fog correction factors @, ; and O, ; are
utilized to predict the transfer on the gas side.

6.2. Incremental mass and energy balances

As long as the bulk (or mean mixed flow) is not
saturated (that is to say, (7, ¢) is located in the super-
heated region) the mixture’s incremental temperature
and vapour concentration changes are still governed
by the equations derived in ref. [1]. Note that it is
possible for fog to be predicted in the film without the
bulk flow being saturated. Physically this means that
if the flow in a cross-section is mixed, fog present
near the wall would evaporate on contact with the
superheated core flow.

The slope of the (7, é) path in the case of fog
formation in the film is now obtained by combining
the global mass and energy balances of ref. [1] (‘equa-
tion (36)’ and ‘equation (38)’, respectively), applying
equations (25), (27) and (42), and g,, = pD/J, and
hy = k[0,

1—¢ dF
dé dG 1 I—¢ df |,
de_do_ 1 ma (48)
t dt Le | -t dF
Le.T=c dil,~

In ref. [1] the path of the bulk properties has been
deduced in the case that the film is superheated. In the
case fog is formed in the film a similar result is now
obtained by separating the variables ¢ and ¢ of equa-
tion (48) and integrating
=G =1-(1—2(x=0))
_ dF LeLe
— 1) —| — 1—c
(t tl) dt ]" LeV( Cl) (49)
~ -
- dF
(tx =0)—1) a —Le,(1—¢)

whereby the vapour fraction and temperature at an
arbitrary location, x = 0, has been applied as bound-

ary condition. The path G(¢) is used to detect the
intersection of the path of the bulk properties and the
saturation line. The path G(5) hold up to the point
when the bulk flow is saturated (¢ = F(7)) and the
path of the mixture’s bulk properties is directed into
the supersaturated region (see Fig. 3).

For condensation the condition for entry of the
bulk into the supersaturated region then corresponds
mathematically to

dG dF

aF Sdr (50)
and for evaporation

dG drfr

The incremental mass balance in the case of such a
saturated bulk flow (i.e. one which would be super-
saturated and therefore fogged after mixing of a cross-
section) flowing through a channel reads

d(pﬁ) 4 C__Ci -
dx - —D\h gmgt‘l_ci +my .

(52)

Neglecting the fraction of fog droplets, for a binary
mixture the channel mass flux (p#)(x) can again be
expressed in terms of the vapour concentration by

dé _ 49, c—¢ mr> (1-9?
A " Dy =)\ ¥ T—¢ T g, ) (i—cx=0)
(53)

The differential energy equation for the super-
saturated bulk flow becomes

if _ —4h, i Inrs @ ¢
dx e, D(p@(x =0\ h, “l-—g

Huriy \ - (1-0)
 hy(t~ z;)) =80 da =0y

g

(54)

As the fraction of droplets is very small, it is not
expected to alter the mixture’s physical properties
significantly.

Vapour |
mass
fraction |

Temperature

F1G. 3. Path of the mixture’s bulk properties (7, ¢).
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In the energy equation the bulk fog created appears
as a heat source, and in the gas mass conservation
relation as a sink of matter. This bulk fog weakens
the temperature drop and increases the fall in vapour
fraction in situations with wall condensation. For wall
evaporation, the fog formed increases the tempera-
ture rise and reduces the vapour fraction increment
in a channel. The amount of fog in the bulk gas
flow is such that the mixture’s bulk properties (7, é)
follow the saturation line. Mathematically the effec-
tive amount of fog is therefore calculated by requiring
that

dG dF
dif ~ dr

With the help of g,, = (ShpD)/D, and h, = (Nuk)/D,
and equations (30) and (53)—(55), the corresponding
dimensionless amount of bulk fog in the channel can
be determined as

(35

i

© dr Sh é¢—cf 1 dF 1 1—-¢
. T Na e T e\ Le, dt ;T Te T=1,
M= dF L '
e, C
huall 1—¢ v Lpyv
a9 9\,
(56)

For a mixture with a (partly) saturated film the fog
film model correction factors @, and ®,, instead of
0, and O, respectively, should be used in equations
(53), (54) and (56). In this case the entering of the bulk
properties into the supersaturated region is examined
with equations (48)—(51).

In Tables 1-4 the bulk fog formation according to
equation (56) has been included with the Lewis num-
ber in G(7) and equation (56) chosen as unity and
the equality Sk = Nu substituted. The amount of fog
formed in the film is smaller than, but close to, the
bulk fog for all cases examined where the entire film
was saturated (6, = 4. = 9,).

On the other hand, the fog formed in the film is
larger than the bulk fog when the film is partly super-
heated. This result would in fact be expected: the
smaller the saturated part of the film is, the closer
the correction factors approximate the conventional
correction factors. For Le =1 the bulk properties
(1, &), according to the conventional film model, are
directed along G(#), which coincides with G (), see
ref. [1]. This implies when a larger part of the film is
situated in the superheated region, (¢, ¢) is less directed
into the saturated region and more directed along
G (1). This phenomenon becomes more pronounced
when a larger part of the film is superheated, which is
indeed confirmed by Tables 2 and 4. It is interesting
to observe that in such cases fog is present in a part
of the film near the wall and in the bulk, both regions
separated by a superheated film part. Furthermore,
for an entirely superheated film, e.g. see Fig. 1 for
G (1) pertaining to Le, = 0.8, the mixture follows this
curve. This means that the bulk remains entirely
within the superheated region while flowing through

a channel: G(f) (‘equation (51)’ from ref. [1]) and
equation (50) then predict no entering of the bulk
properties into the supersaturated region and hence
bulk fog is not formed either.

7. CONCLUSIONS

The conventional film model issues from heat, mass
and momentum transfer in a film next to a wall. In
this paper it has been demonstrated with slope con-
ditions (1) and (2) for wall condensation and wall
evaporation, respectively, that in a binary mixture a
part of or the entire film is supersaturated. On the
basis of the saturation condition the existence and
magnitude of the fogging film region have been deter-
mined and calculated.

The solution of the governing non-linear basic
equation of diffusion and energy in the fog layer has
been found both numerically and approximately with
an asymptotic analysis. Evaluating the heat and mass
transfer rates proved the large influence of fog for-
mation. In particular for small vapour fractions, the
effect of fog formation on the contributions of latent
and sensible heat transfer is significant, as well as the
amount of fog produced. On the other hand, the mass
transfer in a mixture with large vapour mass fractions,
diffusional latent heat transfer is the dominant mode
in a condenser or evaporator, is hardly affected by fog
formation. The total amount of transferred heat is
nearly the same as for a film without fog formation
for all considered physical situations.

For large vapour fractions the temperature and
vapour fraction in the film, correlated by G(¢), can be
situated in the superheated region, even when the bulk
is saturated. This is due to the fact that for large
vapour fractions and Le, < 1 the curvature of G (?) is
such that it lies entirely in the superheated region and
consequently, the classical film model remains valid.
The major role of Le, is once more emphasized when
K, which should be positive in the fog layer, is con-
sidered. This condition is fulfilled for Le, > 1, but not
guaranteed for Le, < 1. The computational examples
in this paper disclosed however that K > 0 in all fog
layers considered.

The approximate solution derived here has been
compared for condensation in various air—water
vapour mixtures with the complete numerical solu-
tion of the governing equation in the fog layer.
Numerous calculations indicate the reliability of this
solution to condensation and evaporation, and appli-
cability to most other vapours as well.

An alternative way of adequately describing heat
and mass transfer in condensers and evaporators,
allowing fog formation in the film and/or in the bulk
flow, has been discussed in great detail. The recom-
mended new procedure is illustrated by means of
a flow chart. It corrects both the local transfer
coefficients and direction of the bulk properties’ path
in the presence of both an induced velocity and fog
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formation (in the film and/or in the bulk of the
mixture).
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APPENDIX

Here the saturation line F(¢) of an air—water vapour mix-
ture and the fog formation condition function H(z) are
derived. The saturation line follows from the thermally per-
fect gas law and Gibbs—Dalton’s law as

P
F(t) = — *
Pv+ j(Plol_Pv)

(AD

In this paper the total pressure P, amounts to 1.01325 bar,
the saturation water vapour pressure is taken from Reid et
al. [27], and the molecular mass of water vapour M, = 18.02
kg kmol~! and of air M, = 28.96 kg kmol~". In Fig. Al the
resulting F(¢) is drawn.

In the case of fog formation equations (12) and (13) are
coupled by relation (5). To determine the amount of pro-

3 supersaturated
0.5}

Fit)

superheated

0 T80 100
t(°C)
FiG. Al. The saturation line.
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duced fog, these equations are combined, yielding
H, d’In(1-F) + din(1—F)
&’ ¢ dr? dr <_‘}t_>2 A2
Le— Hy din(1-F) dy/’
Y de

Equation (A2) is then substituted in equation (12) and equa-
tion (5) applied to produce

Coy

(Le_1)<;d_F>2+ oL OF

v 1—F dr Y1-F df (4}

K=¢D Hy 1 dF (E) (A3)
Lt o T—F@

The linearized form of equation (A3) for small F, with Le = 1
substituted, corresponds to the expression (‘equation (7)’, K
is referred to as ‘r;’) of Toor [16] for the mass of fog for-
mation per unit volume. The amount of fog formation is
positive definite for Le, = 1, since ¢ = F(f) < 1 and the first
and second derivatives of the function F(¢) with respect to ¢
are usually positive. The feature of K being larger than zero
for Le, = 1 has been employed implicitly by Aref’yev and
Averkiyev [17]. For Le, < 1, however, the fog formation
can become zero or even negative, thus fog formation ends.
Mathematically fog formation in the film ends when the
numerator of equation (A3) becomes zero (or negative)

(&)

Le, <H() = —c '
dFY 1 d?F
a) TU-Hgz

(A4)

H(t)
o
L

t(’C)

Fic. A2. The fog formation condition line.

In Fig. A2 this fog condition function H (), which depends
on the saturation line F(¢) only, is drawn with application
of equation (Al). To permit X > 0 in a fog film Le, must be
larger than the maximum H (¢) of the film. Toor [16] assumed
implicitly that K > 0 in analysing fog formation of dilute
water vapour in air (¢ < 0.035, 1 € 35°C). This assumption
appears to be correct a posteriori, since Le, = 0.5 for the
mixtures considered and hence H(f) < Le, in the film (see
Fig. A2).

MODELES DE FILM POUR LES PHENOMENES DE TRANSPORT AVEC FORMATION
DE BROUILLARD: LE MODELE DU FILM DE BROUILLARD

Résumé—La supersaturation éventuelle dans un film et dans le coeur d’un mélange binaire a été précéde-
ment discutée dans un article (Brouwers et Chesters, Int. J. Heat Mass Transfer 35, 1-11 (1992)). On
détermine ici les conditions exactes de la formation du brouillard, I'intensité du brouillard et les régions
surchauffées dans le film. Les équations de la diffusion et de ’énergie (couplées avec les conditions de
saturation) dans la couche de brouillard sont résolues numériquement. Différents mélanges de vapeur d’eau
et d’air illustrent Ieffet de la formation de brouillard sur les transferts de chaleur et de masse. Une analyse
asymptotique de I’équation de la couche de brouillard fournit une excellente solution approchée. Cette
solution conduit 4 des facteurs de correction du modéle analytique du film pour les effets combinés sur le
transfert de la formation de brouillard et de I'injection/succion. Le modéle de film de brouillard est enfin
appliqué a I'écoulement en conduite d’un mélange binaire. Cette approche donne de nouvelles procédures
pour le calcul des condenseurs et évaporateurs avec a la fois du brouillard dans le film (ce qui affecte les
taux de transfert) et/ou dans le coeur du fluide (ce qui affecte les bilans globaux de masse et d’énergie).

FILMMODELLE FUOR TRANSPORVORGANGE MIT NEBELBILDUNG: DAS NEBEL-
FILMMODELL

Zusammenfassung—In einer fritheren Arbeit (Brouwers and Chesters, Int. J. Heat Mass Transfer 35, 1—
11 (1992)) wurde die Méglichkeit einer Ubersittigung in einem Film und in der Kernstréomung eines
bindren Gemisches diskutiert. In der vorliegenden Analyse werden die genauen Bedingungen fiir eine
Nebelbildung und fiir die GrBe der Bereiche mit Nebelbildung und Uberhitzung im Film bestimmt. Im
nichsten Schritt werden die grundlegenden Gleichungen fiir den Stoff- und den Energietransport in der
Nebelschicht (gekoppelt mit der Sattigungsbedingung) numerisch gelést. Berechnungen mit verschiedenen
Gemischen von Wasserdampf und Luft zeigen den erheblichen EinfluB der Nebelbildung auf den Warme-
und Stofftransport. Eine eingehende asymptotische Analyse der grundlegenden Gleichung fiir die Nebel-
schicht filhrt zu einer hervorragend angepaBten NiherungsiGsung. Aus dieser Losung ergeben sich
Korrekturfaktoren fiir das analytische Filmmodell, welche die kombinierten Einfliisse der Nebelbildung
und einer Absaugung/Einspritzung auf die Transportvorginge beriicksichtigen. AbschlieBend wird das Nebel-
Filmmodell auf eine Kanalstromung eines bindren Gemisches angewandt. Dieses Verfahren liefert eine
neue Vorgehensweise bei der Auslegung von Kondensatoren und Verdampfern, in denen sowohl Dampf-
bildung im Film (EinfluB auf die Transportvorginge) und/oder im Kern der Strémung (Einflul auf die
globale Stoff- und Energiebilanz) auftreten kann.
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TUIEHOYHBIE MOJEJIK ABJIEHUN MMEPEHOCA C TYMAHOOBPA3OBAHVEM:
IIJIEHOYHAS MOJEJIb TYMAHA

Annoraums—B panee onybaukoBaHHON paboTe 06CyKIanoCh BO3MOXHOE MEPEHACHILLICHUE IUJIEHKH U
obbema OGuHapHON cMecH. B qaHHoi cTaThe cHavasia ONpeAesiioTCH YCJIIOBHS M HHTEHCHBHOCTB 06pa3o-
BaHUs TyMaHa, a Takxke o6JiacTell nepeHachlllieHHs B IJICHKE, 4 3aTEM MPOBOINTCS YNCIEHHOE pelleHHe
onpeaessoIMX ypaBHEHHH AHG(Y3HH M SHEPrHH (COBMECTHO C YCIOBMSAMM HACBHIEHHSA) IUIS CJIOS
TymaHa. OUEHKa pa3MYHbIX CMECEil BOABI, Mapa H BO3AYXa MOKA3bIBAET CYIIECTBEHHOE BIIMSHHE TyMa-
HOOOpa3oBaHUA Ha CKOPOCTH TEIUIO- U MaccooOMeHa. B pesynbraTte TINAaTenbHOro aCHMIITOTHYECKOTO
AHAJIM3a ONPEACNAIOLIMX YPAaBHEHHH MUIS CJI0A TyMaHa IOJYYeHO NPHOJIMXEHHOE pellieHHe, KOTOpoe
J1aeT NMpeKpacHoe COBNaAcHHE C 3kcnepuMenToM. KpoMe Toro, 3To pellieHHe NO3BOJsAET NOMYYATD NOMN-
paBoyHble KOXDPUILMCHTHI I AHATHTHYECKOH MIEHOYHOH MOJIENH, YUHTHIBAIOIIHUE BIHAHHE TYMaHOO06-
pa30BaHUsg M BIYBa/OTCOCA HA CKOPOCTH mepeHoca. HakoHen, nmneHoyHas Modesb TyMaHa IPHMEHSETCA
K TeuyeHHIo OMHApHON CMecH B KaHale. DTOT NOAXOM NAET BO3MOXXHOCTBH IOJIy YHTh HOBBIE METOABI
pacyeTa KOHAEHCATOPOB W MCHapHTesielf, B KOTOPHIX YYHTHIBAIOTCA KaK TYMaHOOGpa30BaHHE B IUICHKE
(BIMSIIOLIEE HA CKOPOCTH MEPEHOCA), TaK /MMM B oObeMe XHMIAKOCTH (BiHAlOLee HA obumi Ganauc
MAacChi H SHEPTHH).



