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Abstract-In a preceding paper (Brouwers and Chesters, Int. J. Heal Mass Transfer 35, l-11 (1992)) 
possible supersaturation in a film and in the bulk of a binary mixture has been discussed. In the present 
analysis the exact conditions for fog formation and the magnitude of the fogging and superheated regions 
in the film are first determined. Next, the governing equation of diffusion and energy (coupled with the 
saturation condition) of the fog layer is solved numerically. An evaluation of various mixtures of water 
vapour and air illustrates the substantial effect of fog formation on heat and mass transfer rates. 
Subsequently, a thorough asymptotic analysis of the fog layer’s governing equation yields an excellently 
matching approximation solution. Furthermore, this solution leads to analytical film model correction 
factors for the combined effects of fog formation and injection/suction on transfer rates. Finally, the fog 
film model is applied to channel flow of a binary mixture. This approach provides new procedures for the 
computation of condensers and evaporators, allowing both fog formation in the film (affecting transfer 

rates) and/or in the bulk (affecting the incremental balances of mass and energy). 

1. INTRODUCTION 

IN THE film considered in the previous paper [I] fog 
can be formed, if the temperature and vapour fraction 
profiles cross the saturation line. The classical film 
model analysis with resulting correction factors is then 

no longer valid and applicable, since in the super- 
saturated film the energy and diffusion equation are 

altered. 
Supersaturation in mixtures has been the subject of 

many studies in the past, relevant contributions are 
discussed briefly in the following. Piening [2] observed 
no fog formation in slightly supersaturated clean air- 
water vapour mixtures, owing to the absence of 
foreign nuclei. Based on homogeneous nucleation at 
a critical supersaturation level, numerous problems 
concerning supersaturated gas mixtures have been 
treated. Turkdogan [3] and Turkdogan and Mills [4] 
introduced the ‘critical supersaturation model’ (CSM) 
to describe the wall evaporation of metals into a 
helium atmosphere. For the same purpose this CSM 
has been employed and extended by Rosner [5], by 
Rosner and Epstein [6] and Sekulie [7] to model wall 
condensation of water vapour in moist air, by Epstein 
and Rosner [8] to investigate methyl alcohol evap- 
oration into an air atmosphere, and by Hayashi et al. 
[9, lo] to describe the naphthalene sublimation into 
air. 

In an early paper, Johnstone et al. [ 1 I] observed, if 
sufficient foreign nuclei are present, that fog forma- 
tion sets in as soon as supersaturation takes place. 
Assuming no supersaturation to be possible, the so- 
called saturation condition, they derived an erroneous 
expression to investigate the conditions for fog for- 
mation [ 121. The saturation condition has been 
employed fruitfully by Hills and Szekely [ 13, 141, Toor 

[ 15, 161 and Aref ‘yev and Averkiyev [ 171 to investigate 

one-dimensional film systems. Forced convective wall 
condensation of water vapour in air has been mod- 
elled two-dimensionally by Hijikata and Mori [18], 
Legay-Desesquelles and Prunet-Foch [19, 201, and 
Hayashi et al. [2 11. Free convective wall condensation 
of water vapour in moist air has been studied suc- 
cessfully with the saturation condition by Koch [22]. 

The central point of interest in all mentioned elab- 
orations, except ref. [17], is the absence of a film 
analysis including fog formation and an appreciable 
induced velocity. But in a previous paper it was dem- 
onstrated that in many practical situations the 
induced velocity plays a role of major importance, 
and that the basic film model approach is well suited 
to account for this velocity [ 11. In their original paper 
Aref ‘yev and Averkiyev [ 171 presented a film analysis 
of a mixture consisting of air and water vapour under 
evaporation conditions. Saturated bulk conditions 
and equal thermal and diffusional film thicknesses 
were considered and hence the entire film was assumed 
to be saturated. Their numerical results indicated the 
significant effect of fog formation on heat and mass 
transfer rates. However, superheated bulk conditions 
and the possible existence of both superheated and 
saturated regions in the film were not considered, nor 
the application of the fog film model to channel flow. 

In this paper therefore a complete film model analy- 
sis is presented, whereby a superheated bulk and 
unequal film thicknesses are allowed. First, the con- 
ditions for fog formation are analysed thoroughly. 
Subsequently, the existence and magnitude of super- 
heated and saturated regions in the film are deter- 
mined precisely, illustrating the role of the decisive 
parameter Le, (it will be demonstrated that super- 

heating in the film is possible for Le, < 1, not- 
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NOMENCLATURE 

C vapour mass fraction u component of velocity in the direction of 

CP specific heat [J kg-’ K-‘1 x [m ss’] 

D diffusion coefficient [m’s_‘] X coordinate [m] 

Dtl hydraulic diameter ; four times the cross- Y dimensionless coordinate, y/S, 

sectional area divided by the perimeter Y coordinate [ml. 

of the channel [m] 
F saturation vapour mass fraction Greek symbols 

G relation between c and t in superheated 6 film thickness [m] 

region 0 correction factor 

9, mass transfer coefficient [kg mm* ss’] P density [kg m-‘I. 

w fog condition function, see equation (A4) 

H1.M latent heat of condensation [J kg-‘] Subscripts 

h, heat transfer coefficient [W m-’ KP’1 a border of saturated and superheated 

K fog formation per unit volume region 

[kgm m3 s-9 b bulk 

k thermal conductivity [W mm ’ K ‘1 diffusional 

Le Lewis number, k/pc,D : fog 

Lc, modified Lewis number, k/PC,,” [ID fl pertaining to numerical fog film model 

M mass of 1 kmol of substance [kg] fi! pertaining to asymptotic fog film model 

u, dimensionless fog formation, defined by i interface 

equation (30) n non-condensables 

ti mass flux at wall [kg rn-~’ s’] t thermal 

mr fog mass flux in film [kg me2 ss’] tot total 

Nu Nusselt number, h,D,,/k V vapour. 

P pressure [bar] 

Y heat flux at wall [W m-‘1 Superscripts 

Sh Sherwood number, g,,,D,,/pD inv inverse 

t temperature [“Cl mean fixed or ‘bulk’. 

withstanding a saturated bulk). The governing equa- 
tion of diffusion and energy in the fogging region, 
coupled with the saturation condition, is first solved 
numerically. The possible existence of both a satu- 
rated and superheated region in the film, and the 
effect of fog formation on heat and mass transfer, 
is illustrated in various saturated air-water vapour 
mixtures. 

Next, an asymptotic analysis is carried out, yielding 
an excellent approximate solution of the fog layer’s 
governing non-linear equation. This solution supplies 
reliable analytical expressions for the correction 
factors, which are suitable for the dimensioning of 
heat exchanging devices, such as condensers or evap- 
orators. The application of the fog film model to chan- 
nel flow is demonstrated in detail and illustrated by 
means of a flow chart. 

2. FILM ANALYSIS 

In this section the heat and mass transfer in a film 
as described in ref. [I] is analysed and extended to 
include the possibility of fog formation. An elemen- 
tary study of the vapour mass fraction and gas tem- 
pcrature profiles in the film yield the exact cir- 
cumstances needed for formation. The alternative 

diffusion and energy equation, in the case of fog for- 
mation coupled with the saturation condition, are 
then derived and solved numerically. Correction fac- 
tors are then introduced which will be compared in 
the next section with the correction factors for the 
conventional film model without fog formation. 

The connection between the vapour concentration 
c and the temperature t in the film of a binary mixture 
was derived in ref. [l] (‘equation (50)‘). This curve 
can be located such that it crosses the saturation line 
F(t) of the vapour. The possible intersection of G(t) 

and F(t), enabling the formation of fog, is now exam- 
ined by condensing the slope conditions 

for suction and, with a rearranged right-hand side 

(2) 

for injection. In equation (2) the conventional film 
model correction factors have been inserted [ 11. When 
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equations (1) and (2) are not satisfied, the curve G(t) 

is situated entirely in the superheated region, and no 

fog will be formed. Consequently, the classical film 
model corrections remain valid. However, when these 

requirements are not satisfied, the curve G(t) inter- 
sects the saturation line. Assuming no supersaturation 
to be possible, fog will then be formed in part, or all 
of the film. The use and limitation of criteria (1) and 
(2) are discussed in detail in ref. [23]. The film, super- 
heated and/or saturated, is analysed below. 

The first step is to divide the film into a fog or 
saturated layer (0 < y d 6,) and a superheated layer 
(6, < y < 6,. or 6,). The fog layer thickness S, lies 
between zero (i.e. no fog formation) and 8,. or 6,, 
when the entire film is saturated. But 6, is at present 
unknown and will be determined later on. Plural satu- 
rated and superheated regions in the film have been 
excluded implicitly, though it is demonstrated in ref. 
[23] that this feature cannot be proved mathematically 
for Le, < 1. Secondly, at the boundary of the super- 
heated and saturated regions the temperature is 
denoted by 

t(y = 6,) = t, (3) 

and the vapour mass fraction must obey the require- 
ment 

c(y = 6,) = c,. (4) 

The vapour mass fraction up to and including the 
boundary of the saturated region is related to the 
temperature by the saturation condition 

c = F(t) (t, < t < t,). (5) 

This so-called saturation condition has been utilized 

in view of its convenience and accuracy to most prac- 

tical situations. 

In the analysis of the fog layer the droplets created 
(and transported, e.g. by thermophoresis) are not 
explicitly considered and the physical properties in 
the superheated and saturated mixture are therefore 
assumed to be identical. This approach is quite accept- 
able since the fraction of droplets in mixtures is usually 
very small. 

In the superheated region the diffusion equation 
and induced velocity of ref. [l] are still valid. Solving 
this equation with the appropriate boundary con- 
ditions (4) and c(y = S,.) = ch yields 

C(Y) = I-(1-cJexp{Eln($)} 

(6, < y d 6,). (6) 

The temperature distribution is obtained by solving 
the energy equation of the film with application of 
boundary condition (3) and the value of t(y = 6,) = 
lb, resulting in the temperature profile 

t(v) = (& -L) 

i 

{ 

Y-43 

exp Le,(6,.-6,) In 

1 -cb (Hi 1 -c, 
-1 

x - 
6,--L?, 

+ 
1 

4l 
-cb 

exp 1 -------ln ~ 
Le,(6,. - 6,) 

( 
1 

-1 
-c, 

I 

1 
(6, d y < 6,). (7) 

Eliminating (y-6,)/(6, -6,) from equations (6) and 
(7) results in the following relation between c and t in 
the superheated region : 

6,. < 6, 
c=G(0=l+(c~-l)(~~[exp{~~Jln(~~)}-1]+1)4 (t,<lttt(y=6,)) 

c = Cb (t(y = 6‘) < I d fb) 

a,.=J,:c=G(t)= l+(ca-I)(s;[exp{&ln($)}-l]+lr (t, G t < tJ 

6, > 6, 
c=G(O=l+(c.-l)(~[exp{LeV’~~~d,)ln(~)}-l]+l~ (t,<<t<f,,) 

i c is not a function of t for 6, < y < 6, 

frequently in the past, as discussed in the Intro- 
duction. The saturation condition holds in general 
when sufficient particles are present in the mixture 
which can serve as nuclei for condensation. According 
to Steinmeyer [24] these conditions are indeed often 
fulfilled in practical situations. The level of super- 
saturation, which thermodynamically must always be 
non-zero, can then be considered as negligibly small. 
Moreover, for the analysis it is in fact not relevant 
which relation between c and t in the fog region is 
selected, which is to say that F(t) can also be the result 
of a CSM, here the saturation condition is employed 

For 6, = 0 (i.e. t, = t, and c, = c,) solutions (6)-(8) 
reduce to the solutions of the convectional film [l]. 

At the boundary of the saturated and superheated 
region the concentration and temperature (and physi- 
cal properties) are continuous, as are the energy and 
mass flux 

(9) 
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The temperature and vapour concentration in the 
superheated region are already known, see equations 
(6) and (7), but in the saturated region they have yet 
to be determined. However, in the saturated region 
the concentration and temperature are coupled by the 
saturation function (5). Combining equations (9) and 
(10) to eliminate the y-dependence and applying equa- 
tions (5) and (8) yields as tangency condition 

c,- 1 

,a = Le,t_t 
b * 

x exp I { “-” in(s)} -11. (11) 
Le,,(6, - 6,) 

Equation (11) prescribes continuity of the first deriva- 
tive dc/dt as given by equation (8) in the superheated 
region and by equation (5) in the fog layer. Additional 
information about the use and features of equation 

(11) is given in ref. [23]. Equation (11) contains two 
unknowns, namely t, and 6, (since c, = F(Q). In 
order to derive a second equation with both unknowns 
and to complete the analysis of the film, attention is 
now focused on the fog layer next to the wall 

(0 < y < 6,). 
In the fog layer vapour disappears by spontaneous 

condensation and as a result of the droplet formation 
latent heat is liberated. In this layer the energy and 
diffusion equation read 

d2t pDc,,, dc dt 
k--Z+p--= 

dy l-c dydy 
- H,,,K (12) 

,Dd! + .!!!! dc dc = K(, _c) 
dy2 1-cdydy 

(13) 

with as respective boundary conditions t(y = 0) = t, 
and equation (3), and c(y = 0) = c, and equation (4). 
In equations (12) and (13) K represents the mass of fog 
formed in the mixture per unit volume. Eliminating K 

from these equations produces 

d’t dln (1 -c) dt 
Le,,--------_= 

H,,, d2 In (I- c) 

dy dy dy - 7--. 
(14) 

CILV 

This equation is an ordinary non-linear second-order 
differential equation in t with respect to the coordinate 
y, since c is expressed by the saturation equation (5) 
as a function of t. As a soiution in closed form is 
not possible, the boundary value problem (14), with 
boundary conditions t(y = 0) = t, and equation (3), is 
solved numerically with a standard shooting method. 
Detailed information about this solution technique is 
found in Hall and Watt [25]. In order to prepare 
equation (14) for this solution method, the dimen- 
sionless variable 

Y=$ 
a 

(15) 

is substituted into equation (14). By this substitution 
equation (14) remains in exactly the same form, but 
the domain of integration is transformed into 
O<Y<l. 

The second equation containing t, and 6, is now 

obtained by combining the numerical solution of 
equation (14) and equations (7) (9) and (15) 

(t, - t,) In 

6,-C?, 

Le, (6, - 6,) 1 (16) 
-1 

The combined iteration of equations (11) and (16) 
yields 6, and t,. To employ this simultaneous iteration 
the boundary problem (14) has to be solved for every 
value of t, during the iteration. To decouple both 

equations and reduce the computational effort, the 
equality 6, = 6,. could from now on be supposed to be 
valid. Rather than setting NM = Sh, though it 

is acceptable for many transfer processes, the magni- 
tude of the term (6,-c&)/(6,.-6,) is evaluated in the 
following. 

In the case in which no fog is formed in the film, so 

that K is identically zero in equation (13), the vapour 
mass fraction, c,, at location y = 6, is given by 

6, ln(l-c,)-ln(l-q) 

a,.--6,=K(l-cc,)-ln(l-c,) (17) 

since then In (1 - c) depends linearly on y in both the 
saturated and superheated region. If equation (17) is 
supposed to be valid when fog is present and is 
inserted into equation (II), 6, is eliminated from the 
right-hand sides of equations (11) and (16). Hence, 
equation (11) produces readily t,, and with this t, 
equation (14) is solved, and with the numerical solu- 
tion 6, is obtained explicitly from equation (16). A 
similar simplification follows in fact from inserting 
6, = 6,, as discussed above. 

However, equation (17) is only an approximation 

when K # 0 and the error involved by assuming equa- 
tion (17) has to be assessed. The amount of formed 
fog has been derived in the Appendix. It has further- 
more been discussed in ref. [23] that the amount of 
fog produced is greatest where the temperature of 
the fog layer is lowest. For evaporation this tem- 
perature corresponds to t,, while for condensation 
this temperature is found at the interface, thus t = t,. 
Equation (17) is violated the most if this maximum 
value of K is supposed to apply throughout the entire 
fog region. Integrating equation (13) twice with 
respect to y, and application of boundary conditions 
c(y = 0) = c, and equation (4) then yields 
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+ln(l-4) (0 Gy ,< 6,) (18) 

where p follows from equations (15) and (A3) 

p,sK 
PD 

v-G-1) = 
(19) 

The relation between film thicknesses and vapour frac- 
tion follows from combining equations (6) (10) and 
(18), yielding 

6. _ ln(l-CJ-ln(l--4 (l+E) c 

6,.-h, In(l-c,)-ln(l-c,) (20) 

with 

:P 

s=In(l-c,)-ln(l-ci) (21) 

as a measure of the error occasioned by assuming equa- 
tion (17). Equation (17) is rewritten as 

6,-6, 
-1+ ;-1 

( > 6,.-d, ( $I;;;I;;:;If’;. (22) 
d 

For wall evaporation the actual effect of 6, # 6, is greater 
than expressed by this equation and equation (17), as 
E > 0, while for condensation equations (17) and (22) 
exaggerate this effect, since then E < 0. However, equa- 
tion (22) reckons to some extent with unequal thermal 
and diffusional film thicknesses, while its application 
decouples equations (11) and (16) and therefore reduces 
the computational effort. From now on E is therefore 
considered to be zero, the actual magnitude of E is 
assessed in the next section for some practical situations. 

The correction factors of heat and mass transfer 
will now be derived. With equation (15) the trans- 
ferred heat is written as 

k dt 
q=-- 

6, dY y=o’ 
(23) 

Comparing equation (23) with the heat flux in a film 
without fog and without induced velocity, yields as 
correction factor 

(24) 

Combining the mass flux from gas to wall and equa- 
tion (5) results in 

k- pm dFfi 
I I 1 -F(ti) dt t, dy ys~’ (25) 

Application of equations (15) and (25) results in the 

following correction factor for diffusion : 

6, dFI dt 1 

o, = s, dtIt,dYl,w * <.f 
(cb-ci) . 

The gradient of temperature at Y = 0, appearing in 
equations (23) (24) and (26), follows from the 
numerical solution of equation (14). It can easily be 
verified that in general between the fog correction 
factors for mass and heat transfer, O,.,r and Ol,r, 
respectively, the following relation exists : 

owing to the saturation condition (5) in the fog layer. 
An additional interesting property which can be 

determined with the numerical solution of the com- 
bined energy and diffusion equation (14) is the 
amount of fog formed in the saturated layer 

*, 
ti, = 

5 
Kdy. (28) 

p = II 

Applying equations (12) and (15) equation (28) yields 

1 ’ 

-4 Le, y=ol-cdYdY 

The first derivatives of t with respect to Y in Y = 0 
and follow from the numerical solution of equation 
(14) ; this solution is also employed to calculate 
numerically the integral in equation (29) with 
Simpson’s rule. 

The amount of fog formed, represented by equation 
(28) is the same for evaporation and condensation, 
which is explained as follows. Equation (14) remains 
in the same form when y is replaced by the coordinate 

6, -y, only boundary conditions t(y = 0) = t, and (3) 
being exchanged. In other words, evaporation con- 
ditions become condensation conditions, or vice 
versa. The solution of equation (14) with exchanged 
boundary conditions is therefore the reflection of the 
original equation’s solution in the line y = 0.56,, 
hence t(y) curves for evaporation and condensation 
are symmetrical with respect to the line y = 0.56,. 
A similar consideration of equations (28) and (13) 
provides evidence that the amount of fog formed for 
condensation and evaporation is positive and equal. 

A complete analysis has been given in this section 
of a film with possible formation of fog. Equation (1) 
or (2) serves to examine whether fog is formed ; when 
this is the case tangency condition (11), combined 
with approximation (22), provides the boundary of 
the saturated and superheated regions (t,, c,). Ulti- 
mately, the numerical solution of the governing equa- 
tion (14) provides the temperature and coupled 



18 H. J. H. 

vapour concentration in the saturated region, yielding 
the fog layer’s thickness (16), the correction factors 
(24) and (26), and the quantity of fog formed (29). 

3. RESULTS OF NUMERICAL SOLUTION 

The influence of fog formation on heat and mass 
transfer will be greatest when the entire film is satu- 
rated. That is to say, when the bulk temperature t, 
and bulk vapour fraction ch are situated on the satu- 
ration line. In a condenser or evaporator this con- 
dition corresponds to a saturated mixture entering 
and flowing through a channel. To indicate the effect 
of fog formation results are presented based on the 
model derived in the previous section. As an example, 
saturated air-water vapour mixtures at low tem- 
peratures and vapour mass fractions are considered, 

as well as saturated mixtures at high temperatures and 
vapour fractions. Both mixtures are examined under 

condensation conditions, thus c,, > ci, and equal ther- 
mal and diffusion film thicknesses. The former con- 
ditions are for instance found in air-conditioning 
devices, while the latter are typical of condensers. 

For the first case considered, (I,, c,) is set equal to 
(2O‘C, 0.0144) ; this point is situated on the saturation 
line of an air-water vapour mixture under atmo- 
spheric conditions, as derived in the Appendix. The 
bulk values (t,,, cb) are successively set equal to (30°C 
0.0264) and (6O”C, 0.1318), all situated on the same 
saturation function. The latent to specific heat ratio 
H,,,/c,,, of water vapour is set equal to 1200 K. Cal- 
culations are carried out for Le, = 0.5, 0.75, 1 and 

Evaluating equation (11) showed that for all cases 
the entire film is fogged, thus 6, = 6,. = S, and (t,, 
c,) = (thr c,,). Substituting the greatest fb in equation 
(A4) produces as maximum H(tb = 60°C) = 0.13, 
which is well below the smallest Le,, namely Le, = 0.5. 

The aforesaid values assure that Le, > H(t) in all 
considered fogging films, which is a condition for 
K > 0, see the Appendix. In Table I the correction 
factors according to equations (24) and (26), com- 
pared with the conventional correction factors, are 
listed. In this table the dimensionless fog formation is 
also inserted 

BKOUWERS 

This number is the ratio of transported sensible heat 
(heat transferred by conduction) through the film, in 
the case of no fog formation and no induced velocity, 
to created latent heat in the film by fog formation and 
in the presence of an induced velocity. 

The large deviation of the correction factor ratios 
from unity illustrates the substantial influence of 

fog formation on both heat and mass transfer. The 
sensible heat transfer ratio is larger than unity, which 
would be expected since spontaneous condensation in 

the film causes extra sensible heat generation. This 
condensation is at the expense of the diffusional 
vapour transport from bulk to wall. Indeed the ratio of 
the diffusion correction factors is smaller than unity. 
For small vapour mass fractions, the latent (this is 

heat transferred by transport of vapour and liberation 
of latent heat) and sensible heat transfer in a heat 
exchanger are of the same magnitude. Because both 
kinds of heat transfer are seriously affected by fog 
formation, it is interesting to calculate the total 
amount of transferred latent and sensible heat from 

film to wall : 

4101 = q+ti& (31) 

for the classical film model and fog film model. In 
Table 1 the ratio of qtot according to the numerical 
solution and according to the conventional film model 
is listed. All tabled values are close to unity, implying 
the total amount of transported heat is hardly altered 
by fog formation, only the contribution of latent and 
sensible heat is different. Toor [ 151 derived analytically 
that in a film without induced velocity, 1 -c, g 1 and 
Lr = 1, the ratio of transferred heat is exactly equal 

to unity. As the physical situations of Table 1 are 
similar, one can conclude that the numerically 
obtained ratios are in agreement with the aforesaid 
analytical result. 

The maximum error introduced by assumption (17) 
(or equivalently equation (22)) is listed in Table 1, E 
being defined by equation (21). The error increases 
with increasing fog formation levels, which might be 
expected, but remains within an acceptable magnitude 
for realistic conditions (the upper ones of Table 1). 

For the second group of calculations (t,, CJ is set 
equal to (94.81”C, 0.75), and the bulk values (fb, c,,) 
equal to (97.63”C, 0.875) and (99.9O”C, 0.995). All 
points are again situated on the saturation line of an 

Table 1, Results of the numerical solution for (I,, c,) = (20°C 0.0144), S,/S, = 6,/S, = 1 
for all cases 

.~ ~___ ._ 

k @,.,I/@, @c,r,/@< ni,, k,, %Ot.fllYLOf I&l 
~__. 

1, = 30°C 0.50 1.218 0.924 0.39 1 0.393 I.000 0.096 
cb = 0.0264 0.75 1.192 0.901 0.350 0.352 1.000 0.120 

1.00 1.170 0.883 0.316 0.317 1.000 0.136 
1.25 1.153 0.868 0.288 0.289 1.000 0.148 

c”, t = = 60°C 0.1318 0.75 0.50 1.418 1.301 0.723 0.79 1 2.050 1.883 2.091 1.919 1.001 1.002 0.805 0.736 

1.00 1.180 0.67 1 1.731 1.762 1.001 0.819 
1.25 1.073 0.630 1.601 1.629 1.000 0.810 
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Table 2. Results of the numerical solution for (tl, c,) = (9481”C, 0.75) 

&’ = 97.63”C 
c,, = 0.875 

t = 99.9O”C 
c”, = 0.995 

k @t.r,/@r @<,f,/@< 
0.80 1.019 0.999 
0.90 1.062 0.999 
1.00 1.098 0.999 
1.10 1.129 0.999 

0.80 1 .OOo 1.000 
0.90 1.080 0.999 
1.00 1.191 0.999 
1.10 1.298 0.998 

air-water vapour mixture. These temperatures and 
concentrations are relevant to condensers. The cal- 
culations are carried out for Le, = 0.8, 0.9, 1 and 
1.1, the same latent to specific heat ratio, and equal 
thermal and diffusion film thicknesses. The values of 

Le, are different from those of the previous set of 
calculations since an evaluation of equation (1) indi- 
cated that for all afore-mentioned condenser con- 
ditions and Le, = 0.5 and 0.75, fog is not formed at 
all. For these small Le, values the convex curve G(t) 
is entirely situated in the superheated region. Thus, 
although the interface and bulk properties are both 
situated on the saturation line, fog is not formed. 
Consequently, the conventional correction factors of 
ref. [l] retain their validity for these cases. 

In Table 2 the calculated correction factor ratios 
and dimensionless fog formation levels are listed for 
the cases considered. As for some cases the film is now 
partly or even entirely superheated, the dimensionless 
fog layer thickness SJS, is also included in this table, 
0 < SJS,. = SJS, < 1. In Fig. 1 the determined tem- 
perature and concentration profiles in the film, with 
y as parameter, for Le, = 0.8 and 0.9 are drawn as 
examples. For Le, = 0.8 the curve G(t) is situated 
in the superheated region, as correctly predicted by 
equation (1). According to this equation fog is formed 
for Le, = 0.9. With equation (11) the border of the 
superheated region (t,, c,) has been determined. In 

Fig. 1 the continuity of the first derivative dc/dt at the 
boundary between saturated and superheated zones 
is evident. In Table 2 or Fig. 1 it can be seen that 
for the examined situations the film can be entirely 
superheated, partly superheated and saturated, or 
entirely saturated. The correction factor ratios for 
heat and mass transfer differ most from unity, of 
course, when the entire film is saturated. For Le, k 1 
the entire film is always saturated when the bulk is 
saturated. This feature of the film for Le, = 1 was 
employed implicitly by Aref ‘yev and Averkiyev [ 171 
and is explained in ref. [23]. In Table 2 H(t,) has been 
included, see equation (A4), with t, = ti substituted 
for a superheated film and t, = tb for an entirely satu- 
rated film. One can readily see that the maximum 
H(t,) of the film is smaller than Le, for all cases 
examined, thus K > 0 is assumed. In ref. [23] it is 
deduced that t, is always such that H(t,) < Le, is 
fulfilled. 

0.03 1 0.026 
0.121 0.121 
0.198 0.198 
0.261 0.261 

0.000 0.000 
0.356 0.346 
0.778 0.780 
0.132 1.135 

0.37 1.000 0.77 
1 .oo 1.000 0.84 
1.00 1.000 0.84 
1.00 1.001 0.84 

0.00 1 .ooo 0.71 
0.14 1.000 0.82 
1 .oo 1 .ooo 0.99 
1.00 1.000 0.99 

Q - t{ 

FIG. 1. Behaviour of vapour concentration and temperature 
in the film with respect to the saturation line, (f,, c,) = 

(94.81”C, 0.75) and (th, ch) = (99.9O”C 0.995). 

A glance at the total transferred heat and the 
diffusion correction factor ratios shows that these are 
now both nearly unity, even for completely saturated 
films. This means that fog formation does not seri- 
ously affect the vapour diffusion and latent heat trans- 
fer in condensers. In condensers, however, the main 
part of transferred heat is latent heat ; Sparrow et al. 
[26], for example, demonstrated that the sensible heat 
transfer is negligibly small because the temperature 
difference between wall and bulk is very small. As 
the diffusional mass transfer is hardly altered by fog 
formation, not only will the overall heat transfer in a 
condenser be the same in the case of fog formation, 
but also the dominant latent mode of heat transfer 
will remain the same. Or in other words, for condenser 
calculations the conventional film model will predict 
heat and mass transfer rates sufficiently accurately, 
with or without fog formation. 

The relatively unimportant effect of fog formation 
in condensers is once more illustrated by the small 
amount of fog formed, see ti, in Table 2. One must 
be aware when the actual amount of fog formed is 
considered, that the temperature differences (tb - ti) 
pertaining to Table 1 are much larger than those per- 
taining to Table 2. As the maximum introduced error 
a, which is correlated with K and r&, is also much 
smaller for the physical situations studied here, it has 
not been listed in Table 2. 
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In the analysis of the previous section no attention 
has been paid to the film momentum equation in the 
case of fog formation, nor has there been derived a 
correction factor for friction in a fogged film. The 
correction for suction or injection is only of import- 
ance when the vapour mass fractions are large. The 
calculation of diffusional mass transfer in the case of 
fog formation has shown that the diffusion profile in 
the film is significantly altered only for small vapour 
mass fractions. But for small vapour mass fractions 
the mass flux as such is small and thus the friction 
correction factor close to unity. For large vapour frac- 
tions the correction becomes important, but for this 
case the concentration profile, and pertaining mass 
flux, is nearly unchanged by fogging. Accordingly, the 
author confines himself by suggesting a substitution 
of the mass flux in the conventional correction factor 
will be a good approximation of the true friction cor- 
rection factor. The substituted mass flux may be cal- 
culated by either the classical or the fog film model. 

4. ASYMPTOTIC APPROXIMATION SOLUTION 

In the previous section the coupled energy and 
diffusion equation (14) ofthe fog layer has been solved 
numerically. To this end, a standard shooting method 
was employed to solve the boundary value problem. 
This numerical method consists of a combined inte- 
gration and iteration routine to find a solution which 
satisfies both boundary conditions of t at y = 0 and 
6,. In the context of an operating heat exchanger t, 
and c, = F(t,) have to be calculated iteratively, since 
the interface temperature and concentration in an 
evaporator or condenser have to obey a local energy 
balance, and are not known a priori. The coupled 
application of an iteration for t,, and a shooting 
method to solve equation (14) for each cycle of this 
iteration, yields long computation times. The deri- 
vation of an asymptotic approximate solution of 
equation (14) is therefore desirable and this is pre- 
sented in this section. 

In order to derive an approximate solution of equa- 
tion (14), an assessment of the order of magnitude of 
the diverse terms is first carried out. For small vapour 
mass fractions the first term on the left-hand side of 
equation (14) is of about the same magnitude as the 
term on the right-hand side. The latter is of import- 
ance because, even for small c, this term is large by 
virtue of the presence of the latent specific heat ratio. 
This becomes evident when the typical values appear- 
ing in Table 1 are considered and one realizes that Le, 

is of the order of unity and H,,,/c,,, is of the order of 
120-l 200 K for most vapours. The second and non- 
linear term on the left-hand side is very small when 
compared with the two aforesaid terms of equation 
(14). For large vapour mass fractions (see Table 2 for 
typical values of c and t) the term on the right-hand 
side completely dominates both of the other terms in 
equation (14). Thus again, the non-linear term plays 
no role of importance. 

The considerations of small and large vapour con- 
centrations yield the relative unimportance of the 
second and non-linear term on the left-hand side of 
equation (14). Evaluating the equation without this 
non-linear term indeed yields a promising agreement 
between the reduced solution and the complete 
numerical solution of equation (14). Yet, a much 
better agreement is obtained by assessing the con- 
tribution of this term to the complete solution. 

The non-linear term only becomes of some import- 
ance for large vapour fractions, when it exceeds the 
other term on the left-hand side of equation (14). But 
again it must be stressed that under these cir- 
cumstances both terms are small in comparison with 
the term on the right-hand side of the equation. Math- 
ematically, then, for large vapour fractions the solu- 
tion of 

d’ln(l-c) o 
dJ,* = 

accurately approximates the complete solution of 
equation (14). Integration of equation (32) and appli- 
cation of the boundary conditions at the interface and 
equation (4) yields 

c(y)= I-(1-c,)exp{~ln(~)~ (OGYG&). 

(33) 

This solution for the saturated layer, combined with 
solution (6) for the superheated layer, corresponds 
exactly to the undisturbed diffusion profile of a film 
without fog formation [I]. This is the reason that for 
large vapour fractions the conventional diffusional 
correction factor without fog almost coincides with 
that of the film model with fog, as confirmed by the 
numerical results listed in Table 2. 

To obtain a higher order approximate solution of 
equation (14), the zero-order solution (33) is sub- 
stituted in the non-linear term of equation (14) 

dt H,,, d*ln(l-c) 

dy=G dy= (34) 

The asymptotic solution (33) has been substituted 
in the non-linear term since only for large vapour 
fractions this term becomes of some importance. For 
small vapour fractions this term is still dominated by 
both of the other terms appearing in equation (I 4) or 
(34). Equation (34) is integrated twice with respect 
to y 

r(y) dy 

Applying the boundary conditions at the interface and 
equations (3) and (4) yields the integration constants 
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K 

I 

= Le,(ta -6) -$ln ( ) I-c, 
6, a 1 -c, 

Substitution of equation (39) into equation (36) now 

yields 

x($+&llotdy) (36) K, =(LG--l)v--iln(s) 

and (. ta(l-C,)--t,(l--C,) 
X 5+ 

C,-C, 
). (40) 

K2 = Le,t,-?ln(l---q). (37) A complete approximate solution (35), combined with 
equations (37) and (40), of equation (14) has now 

The integral appearing in equation (36) is assessed been realized. The dimensionless fog layer thickness 

with the help of the zero-order solution (33). This is obtained by combining equations (5) (7) (9), (22), 

(35) and (40) 

6. 
L= 1+;- L (tb-tJln 2 

( > 

6, 
” exp{&ln(~)+&l~(~)}--1 1 

X &(I -Ci)-ti(l-Ca) 

c,-ci 

(41) 

equation constitutes an expression for c as a function 
The thermal correction factor follows from equations 

of y, while t as a function of y is needed to solve the 
(15) and (24) 

integral. In the fog layer, however, c is determined by 
the saturation function (5) as a function of t, and s,d’ 

conversely, t is a known function of c. However, 
dy y=o 

in general this relation permits no further analytic 
@C.f = (fb_ t,) (42) 

treatment of the integral. As a compromise, therefore, 

the saturation line in the saturated region is now The first derivative oft with respect to y at the wall, 

roughly approximated as a straight line between according to the approximate solution, is determined 
with the help of equations (5) (35) and (40) 

(43) 

The dimensionless fog layer thickness in this equation 
(ti, ci) and (t,, c,) is given by equation (41). The diffusional correction 

t=F”“(c) zz 

factor pertaining to the approximate solution can 

(ta-t,)+ti (Cl < C < C,). easily be obtained by combining equations (27) and 
d I 

(38) 
(42) 

In equation (38) for c the zero-order solution (33) is &dF d’ 

again substituted and the integral in equation (36) is 
solved analytically as follows : 

o,r = 
I I dt l,dy y=o 

(cb-4 
(44) 

t,(l --q)-t,(l -c,) r, - t, The amount of fog formed is determined by equations 
+ 

c, - c, (13) and (28) 

(39) 
riQ=pD 

dln(l -c) 

dy 
(45) 

,“= 0 
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This equation, combined with equations (35) and and 2, respectively. To determine the boundary of 
(36) is written as saturation (t., c,), equation (11) has again been 

lj2r2 = &(6~$~YX0-~~$~Yz80 

employed, again, of course, yielding identical (t,, c,) 
and H(t,) for all cases examined. 

A comparison of all values listed in Tables l-4, 

6, (H)ln 1-G 
shows the maximum discrepancy between numerical 

+s, Le, (->> l-c, 
(46) and approximate solutions is of about a few per 

The first derivative of t in y = 0 in equation (46) 
follows from equation (43), the first derivative in 

y = 6, is calculated by combining equations (5), (35) 

and (40) 

c, - c, 
(47) 

H,.,, 1 dFI 

The dimensionless fog layer thickness appearing in 
equations (43) (46) and (47) follows from equation 

(41). 

5. RESULTS OF ASYMPTOTIC SOLUTION 

In this section similar calculations to those pre- 
sented in Section 3 are carried out to compare the 
predictions of the asymptotic approximate solution 
with those of the complete numerical solution. In 
Tables 3 and 4 the results of these calculations are 
listed which correspond with the computational 
results of the complete model, as listed in Tables 1 

mille. Even for the largest difference between (t,, c,) 
and (lb, cb), the agreement is still very good. This large 
difference belongs to unrealistically large sensible and 
latent heat fluxes from gas to wall. It will therefore not 
be found in ordinary heat exchangers or condensers, it 
has only been selected to create some deviation 
between the numerical and approximate solutions. 

One can furthermore conclude from Tables 1 and 

3 that the error decreases with increasing Le,. For 
larger Le, the first term on the left-hand side of equa- 
tion (14) gains importance and dominates more the 
second term, resulting in a smaller deviation. For 
small vapour fractions it is namely important for the 

Table 3. Results of the approximate solution for (t,, c,) = (2O”C, 0.0144), S,/S, = S,/S, = 1 
for all cases 

k @,d@, 

f, = 30°C 0.50 1.218 0.924 0.391 0.393 
c,, = 0.0264 0.75 1.192 0.901 0.350 0.352 

1 .oo 1.170 0.883 0.316 0.317 
1.25 1.153 0.868 0.288 0.289 

t, = 60°C 0.50 2.41 I 0.789 2.035 2.068 
ch = 0.1318 0.75 2.297 0.721 1.871 1.915 

1.00 2.171 0.670 1.722 1.760 
1.25 2.07 1 0.629 1.594 1.627 

1.000 
1.000 
1.000 
1.000 

0.999 
0.999 
1 .ooo 
1 .ooo 

0.096 
0.120 
0.136 
0.148 

0.736 
0.802 
0.817 
0.809 

Table 4. Results of the approximate solution for (t,, c,) = (94.81”C, 0.75) 

t,, = 97.63”C 0.80 1.019 0.999 0.03 1 0.026 0.37 1.000 
c,, = 0.875 0.90 1.062 0.999 0.121 0.121 1 .oo 1.000 

1.00 1.098 0.999 0.198 0.198 1 .oo 1.000 
1.10 1.129 0.999 0.261 0.261 1 .oo 1.000 

t, = 99.9O”C 0.80 1 .ooo 1.000 0.000 0.000 0.00 1.000 
Cb = 0.995 0.90 1.080 0.999 0.356 0.346 0.14 1 .ooo 

1 .oo 1.191 0.999 0.777 0.780 1.00 1.000 
1.10 1.298 0.998 0.130 1.135 1 .oo 1 .ooo 

0.77 
0.84 
0.84 
0.84 

0.71 
0.82 
0.99 
0.99 
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approximation to be accurate that both Le, and 
H,,,/c~,~ are large. For large vapour mass fractions 
however, the error slightly increases with larger Le,, 

see Tables 2 and 4. For these physical situations it is 
important that H,,,/c,,~ is large and consequently the 
right-hand side of equation (14) dominates both terms 
on the left-hand side. 

The approximation is based on the fact that H,,,/c,,, 

is large. For water vapour this ratio is close to 
1200 K, but for a lot of other vapours it is a factor 
of 10 smaller. A repetition of all calculations, with 

H,,,lc,, = 120 K and all other values unchanged, indi- 
cated however that the approximation solution is still 
correct within a few per cent. Since this error is quite 
acceptable, the approximate solution is not only appli- 
cable to water vapour, but to most other vapours as 
well. 

In Tables 14 only results pertinent to conditions 
found in air-conditioning devices and condensers have 
been listed. Computations carried out for inter- 
mediate vapour fractions and temperatures, for 
instance found in exhaust gases from dryers, indicate 
that the agreement is of the same high level as in the 
cases studied in detail here. Furthermore, since the 
temperature as a function ofy in the fog layer has been 

found to be similar for evaporation and condensation, 

the approximation is applicable to evaporation pro- 

cesses as well. 

6. APPLICATION OF THE FOG FILM MODEL 

TO CHANNEL FLOW 

In preceding sections the conditions have been dis- 
cussed under which fog formation in the film occurs 
and modified correction factors derived. In this sec- 
tion the use of this extended film model is demon- 
strated. This model includes the possibility that the 
bulk properties move to enter the supersaturated 
region and that, as a result, bulk fog is created. Similar 
to the conventional film model, here the bulk values 
tb and cb are taken to be sufficiently approximated by 
the mixed mean values of these quantities in a cross- 
section. A flow chart, drawn in Fig. 2, illustrates the 

procedure followed. 

6.1. Determination of interface conditions (ti, ci) 

In evaporators or condensers the interface tem- 
perature ti and associated vapour mass fraction ci 
(= F(Q) are determined by a local energy balance. The 
net latent and sensible heat flux from or to an interface 
must be zero, the fluxes on the gas side being given by 
the conventional film model corrections for heat and 

START 9 

eq. (11) and eq. (22) 0 
c,f and T,f 

iiif with eq. (56) 

C + d: with eq. (53) 

t + dt with eq. (54) 

FIG. 2. Flow chart of the applied fog film model. 
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mass transfer. Once t, has been obtained, equation (1) 
or equation (2) for suction or injection, respectively, 
is employed to determine whether the vapour con- 
centration/temperature line G(t) is located in the 
supersaturated region. These conventional film model 
expressions are based on the assumption of no inter- 
section of this relation with the saturation line. If 
this proves indeed to be the case, the t, and fluxes 

calculated, according to equation (1) or (2), are cor- 
rect and the amount of fog formed in the film is equal 

to zero. 
If, on the other hand, an intersection between equa- 

tion G(t) and the saturation line is detected, an alter- 
native procedure has to be followed. First, the tem- 
perature and vapour concentration (t,, c,) on the 

boundary of the saturated and superheated region is 
determined numerically with the help of equations 
(11) and (22). By employing a local energy balance, t, 
is then re-determined. But during this iterative pro- 
cedure now the fog correction factors O,.,, and O,,r are 
utilized to predict the transfer on the gas side. 

6.2. Incremental mass and energy balances 
As long as the bulk (or mean mixed flow) is not 

saturated (that is to say, (c ?) is located in the super- 
heated region) the mixture’s incremental temperature 
and vapour concentration changes are still governed 
by the equations derived in ref. [I]. Note that it is 
possible for fog to be predicted in the film without the 
bulk flow being saturated. Physically this means that 
if the flow in a cross-section is mixed, fog present 
near the wall would evaporate on contact with the 
superheated core flow. 

The slope of the (< ?) path in the case of fog 
formation in the film is now obtained by combining 

the global mass and energy balances of ref. [l] (‘equa- 
tion (36)’ and ‘equation (38)‘, respectively), applying 
equations (29, (27) and (42), and gm = @D/6, and 
h, = k/6, 

I-cdF ___~ 
d? dc 1 1-c; dt *, 

Ti= Z= Le 1 i-t, dFI .’ 
(48) 

Le, I -c, dt I,, ’ 

In ref. [l] the path of the bulk properties has been 
deduced in the case that the film is superheated. In the 
case fog is formed in the film a similar result is now 
obtained by separating the variables C and fof equa- 
tion (48) and integrating 

c=G(9=1-(l-?(x=O)) 

(i-Q: -.&(1-c,) 
lfl”/JQ 

‘, 
X I (i(x = 0)-t,): -Le,(l-c,) 1 

(49) 

‘8 

ary condition. The path c(g is used to detect the 
intersection of the path of the bulk properties and the - - 
saturation line. The path G(t) hold up to the point 
when the bulk flow is saturated ((: = F(I)) and the 
path of the mixture’s bulk properties is directed into 
the supersaturated region (see Fig. 3). 

For condensation the condition for entry of the 
bulk into the supersaturated region then corresponds 
mathematically to 

and for evaporation 

dc dF 

dt’dtj 

(50) 

(51) 

The incremental mass balance in the case of such a 
saturated bulk flow (i.e. one which would be super- 
saturated and therefore fogged after mixing of a cross- 
section) flowing through a channel reads 

(52) 

Neglecting the fraction of fog droplets, for a binary 
mixture the channel mass flux @z?)(x) can again be 
expressed in terms of the vapour concentration by 

dc - 49m p-c, r?lr (1 -C))’ 
p= 
dx 5x)(x=0) 

0, ~ 
1 -c, + z (I--c(x = 0)) 

(53) 

The differential energy equation for the super- 
saturated bulk flow becomes 

di - 4h, 
p= 
dx c,,&@~?)(x = 

As the fraction of droplets is very small, it is not 
expected to alter the mixture’s physical properties 
significantly. 

Vapour 
mass 

fraction 

: 

supersaturated 

Temperature 

FIG. 3. Path of the mixture’s bulk properties (< ?) 

whereby the vapour fraction and temperature at an 
arbitrary location, x = 0, has been applied as bound- 
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In the energy equation the bulk fog created appears 
as a heat source, and in the gas mass conservation 
relation as a sink of matter. This bulk fog weakens 

the temperature drop and increases the fall in vapour 
fraction in situations with wall condensation. For wall 
evaporation, the fog formed increases the tempera- 
ture rise and reduces the vapour fraction increment 
in a channel. The amount of fog in the bulk gas 
flow is such that the mixture’s bulk properties (< ?) 
follow the saturation line. Mathematically the effec- 
tive amount of fog is therefore calculated by requiring 
that 

dG dF 
_=- 
dt dt i (55) 

With the help of g,,, = (Sh pD)/D, and h, = (Nu k)/D, 
and equations (30) and (S-(55), the corresponding 
dimensionless amount of bulk fog in the channel can 
be determined as 

(56) 
For a mixture with a (partly) saturated film the fog 
film model correction factors O,,f and OC,r, instead of 
0, and O,, respectively, should be used in equations 
(53), (54) and (56). In this case the entering of the bulk 
properties into the supersaturated region is examined 

with equations (48)-(51). 
In Tables 14 the bulk fog formation according to 

equation (56) has been included with the Lewis num- - - 
ber in G(t) and equation (56) chosen as unity and 
the equality Sh = Nu substituted. The amount of fog 
formed in the film is smaller than, but close to, the 
bulk fog for all cases examined where the entire film 
was saturated (6, = 6,. = 6,). 

On the other hand, the fog formed in the film is 
larger than the bulk fog when the film is partly super- 
heated. This result would in fact be expected: the 
smaller the saturated part of the film is, the closer 
the correction factors approximate the conventional 
correction factors. For Le = 1 the bulk properties 
(< C), according to the conventional film model, are 
directed along G(t), which coincides with G(t), see 

ref. [l]. This implies when a larger part of the film is 
situated in the superheated region, (< C) is less directed 
into the saturated region and more directed along 
G(t). This phenomenon becomes more pronounced 
when a larger part of the film is superheated, which is 
indeed confirmed by Tables 2 and 4. It is interesting 
to observe that in such cases fog is present in a part 
of the film near the wall and in the bulk, both regions 
separated by a superheated film part. Furthermore, 
for an entirely superheated film, e.g. see Fig. 1 for 
G(r) pertaining to Le, = 0.8, the mixture follows this 
curve. This means that the bulk remains entirely 
within the superheated region while flowing through 

- - 
a channel : G(t) (‘equation (51)’ from ref. [l]) and 
equation (50) then predict no entering of the bulk 

properties into the supersaturated region and hence 

bulk fog is not formed either. 

7. CONCLUSIONS 

The conventional film model issues from heat, mass 

and momentum transfer in a film next to a wall. In 
this paper it has been demonstrated with slope con- 
ditions (1) and (2) for wall condensation and wall 
evaporation, respectively, that in a binary mixture a 

part of or the entire film is supersaturated. On the 
basis of the saturation condition the existence and 
magnitude of the fogging film region have been deter- 
mined and calculated. 

The solution of the governing non-linear basic 

equation of diffusion and energy in the fog layer has 
been found both numerically and approximately with 
an asymptotic analysis. Evaluating the heat and mass 
transfer rates proved the large influence of fog for- 
mation. In particular for small vapour fractions, the 
effect of fog formation on the contributions of latent 
and sensible heat transfer is significant, as well as the 
amount of fog produced. On the other hand, the mass 
transfer in a mixture with large vapour mass fractions, 
diffusional latent heat transfer is the dominant mode 
in a condenser or evaporator, is hardly affected by fog 
formation. The total amount of transferred heat is 
nearly the same as for a film without fog formation 
for all considered physical situations. 

For large vapour fractions the temperature and 
vapour fraction in the film, correlated by G(t), can be 
situated in the superheated region, even when the bulk 
is saturated. This is due to the fact that for large 
vapour fractions and Le, < 1 the curvature of G(t) is 
such that it lies entirely in the superheated region and 
consequently, the classical film model remains valid. 
The major role of Le, is once more emphasized when 
K, which should be positive in the fog layer, is con- 
sidered. This condition is fulfilled for Le, > 1, but not 
guaranteed for Le, < 1. The computational examples 

in this paper disclosed however that K > 0 in all fog 
layers considered. 

The approximate solution derived here has been 

compared for condensation in various air-water 
vapour mixtures with the complete numerical solu- 

tion of the governing equation in the fog layer. 
Numerous calculations indicate the reliability of this 
solution to condensation and evaporation, and appli- 
cability to most other vapours as well. 

An alternative way of adequately describing heat 
and mass transfer in condensers and evaporators, 
allowing fog formation in the film and/or in the bulk 
flow, has been discussed in great detail. The recom- 
mended new procedure is illustrated by means of 
a flow chart. It corrects both the local transfer 
coefficients and direction of the bulk properties’ path 
in the presence of both an induced velocity and fog 
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formation (in the film and/or in the bulk of the 
mixture). 
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APPENDIX 

Here the saturation line F(t) of an air-water vapour mix- 
ture and the fog formation condition function H(t) are 
derived. The saturation line follows from the thermally per- 
fect gas law and Gibbs-Dalton’s law as 

F(t) = - 
PV 

P” + $ (P,,, _P”) 
” 

(Al) 

In this paper the total pressure P,,, amounts to 1.01325 bar, 
the saturation water vapour pressure is taken from Reid et 
al. [27], and the molecular mass of water vapour M, = 18.02 
kg kmol-’ and of air M, = 28.96 kg kmoll’. In Fig. Al the 
resulting F(t) is drawn. 

In the case of fog formation equations (12) and (13) are 
coupled by relation (5). To determine the amount of pro- 

supersaturated 

f (“Cl 

FIG. Al. The saturation line. 
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duced fog, these equations are combined, yielding 

Equation (A2) is then substituted in equation (12) and equa- 
tion (5) applied to produce 

W-1) 
K=pD 

dr * 

~,+5?!1dF 
( ). 

dy 
(A3) 

cp,” I-Fdt 

The linearized form of equation (A3) for small F, with Le = 1 
substituted, corresponds to the expression (‘equation (7)‘, K 
is referred to as ‘rl’) of Toor [16] for the mass of fog for- 
mation per unit volume. The amount of fog formation is 
positive definite for Le, > 1, since c = F(t) -c 1 and the first 
and second derivatives of the function F(t) with respect to t 
are usually positive. The feature of K being larger than zero 
for Le, = 1 has been employed implicitly by Aref’yev and 
Averkiyev [17]. For Le, -c 1, however, the fog formation 
can become zero or even negative, thus fog formation ends. 
Mathematically fog formation in the film ends when the 
numerator of equation (A3) becomes zero (or negative) 

fdF\Z 

Le, < H(t) = (A4) 

FIG. A2. The fog formation condition line. 

In Fig. A2 this fog condition function H(t), which depends 
on the saturation line F(t) only, is drawn with application 
of equation (Al). To permit K > 0 in a fog film Le, must be 
larger than the maximum H(t) of the film. Toor [16] assumed 
implicitly that K > 0 in analysing fog formation of dilute 
water vapour in air (c < 0.035, r < 35°C). This assumption 
appears to be correct a posteriori, since Le, z 0.5 for the 
mixtures considered and hence H(f) < Le, in the tilm (see 
Fig. A2). 

MODELES DE FILM POUR LES PHENOMENES DE TRANSPORT AVEC FORMATION 
DE BROUILLARD: LE MODELE DU FILM DE BROUILLARD 

R&sum&La supersaturation eventuelle dans un film et dans le coeur d’un melange binaire a it& precede- 
ment discutee dans un article (Brouwers et Chesters, Int. J. Heat Muss Transfer 35, l-l 1 (1992)). On 
determine ici les conditions exactes de la formation du brouillard, l’intensite du brouillard et les regions 
surchauffees dans le film. Les equations de la diffusion et de l’energie (couplees avec les conditions de 
saturation) dans la couche de brouillard sont resolues numtriquement. Differents melanges de vapeur d’eau 
et d’air illustrent l’effet de la formation de brouillard sur les transferts de chaleur et de masse. Une analyse 
asymptotique de l’equation de la couche de brouillard fournit une excellente solution approchee. Cette 
solution conduit a des facteurs de correction du modile analytique du film pour les effets combines sur le 
transfert de la formation de brouillard et de l’injection/succion. Le moddle de film de brouillard est enfin 
applique a l’ecoulement en conduite d’un melange binaire. Cette approche donne de nouvelles procedures 
pour le calcul des condenseurs et evaporateurs avec a la fois du brouillard dans le film (ce qui affecte les 

taux de transfert) et/au dans le coeur du fluide (ce qui affecte les bilans globaux de masse et d’tnergie). 

FILMMODELLE FUR TRANSPORVORGANGE MIT NEBELBILDUNG : DAS NEBEL- 
FILMMODELL 

Zusammenfassung-In einer frtiheren Arbeit (Brouwers and Chesters, hf. J. Heat Mass Transfer 35, l- 
11 (1992)) wurde die Mijglichkeit einer Uberslttigung in einem Film und in der Kernstriimung eines 
biniren Gemisches diskutiert. In der vorliegenden Analyse werden die genauen Bedingungen fur eine 
Nebelbildung und fur die Gr6l3e der Bereiche mit Nebelbildung und fjberhitzung im Film bestimmt. Im 
nlchsten Schritt werden die grundlegenden Gleichungen fur den Stoff- und den Energietransport in der 
Nebelschicht (gekoppelt mit der Slttigungsbedingung) numerisch gel&t. Berechnungen mit verschiedenen 
Gem&hen von Wasserdampf und Luft zeigen den erheblichen Einflug der Nebelbildung auf den Warme- 
und Stofftransport. Eine eingehende asymptotische Analyse der grundlegenden Gleichung fur die Nebel- 
schicht fiihrt zu einer hervorragend angepagten Nlherungsliisung. Aus dieser Lijsung ergeben sich 
Korrekturfaktoren fur das analytische Filmmodell, welche die kombinierten Einfliisse der Nebelbildung 
und einer Absaugung/Einspritzung auf die Transportvorglnge beriicksichtigen. AbschlieBend wird das Nebel- 
Filmmodell auf eine Kanalstriimung eines binaren Gemisches angewandt. Dieses Verfahren liefert eine 
neue Vorgehensweise bei der Auslegung von Kondensatoren und Verdampfern, in denen sowohl Dampf- 
bildung im Film (Einflug auf die Transportvorglnge) und/oder im Kern der Striimung (EinfluB auf die 

globale Stoff- und Energiebilanz) auftreten kann. 
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WIEHOqHbIE MOAEJIM RBJIEHMn nEPEHOCA C TYMAHOOEPA30BAHMEM: 
l-IJIEHO~HAII MOAEJIb TYMAHA 

AmloTaqm-B pmee ony6nliKoBaHHoti pa6oTe o6cy)Kcnanocb Bo3htoxWoe nepeHacblLqeHue ~JICHKB A 

o6%ehna 65iHapHOfiCMeCti.BnaHHOii CTaTbeCHaYana OIl~~enW3TCK yCnOBHK H HHTeHWBHOCTbo6pa3o- 

BaHAK TyMaHa,a TaKxe o6nacTeii nepesacHluesua B nneHKe,a 3aTeM II~OBO~HTCX wcnemoe pelueHse 

onpenenaloluex ypaBHeH&i ne~+$y3nn B 3HeprHa (coBMecTH0 c ycnoeaahfa Hacbwemix) nnr cnofl 
TyMaHa.OueHKa pa3naqHbrx ch4eceii Bonbr,napa u Bosnyxa noKa3btBaeT cyurecrsernioe BnHKHife TyMa- 

Hoo6pasoBaHua Ha CKOPOCTB Tenno- li hfaccoo6MeHa. B pe3ynbTaTe TIIlaTenbHOrO aCBMnTOTWiecKOrO 

asanasa 0npenenrIouvix ypaBHeH& n.nK cnon TyMaHa nonyqeso npi6JIiixeHHOe perueaae, KoTopoe 

naeT npeKpacHoe coBnaneH"e c 3KCnCpHMeHTOM. KpoMe TOTO,3TO perueHHe n03nonKeT nOnyWTb non- 

paBOWble K03+@,~HeHTbIaTIIl aHilJIEiTWIeCKOii IUleHO'iHOii MOAenH,yWiTbIBaIOUVie BnWlHHeTyMaHOO6- 

pa3oeaaun B BnyBa/oTcoca Ha cKopoCra nepeaoca.HaKoHeq,nneHo=tHaa Monenb TyMaHa npuh4eHaeTcK 

K TeveHBm 6eriapHoir CM~CB B KaHane. 3~0~ IIOAX~A naeT B03MoxcHocTb nony YaTb HoBble MeTonbI 

paC'#eTa KOHAeHCaTOpOB A EiCIIapHTenefi, B KOTOpbIX yYHTbIBalOTC5l KLK TyMaHOO6pa3OBaHHe B ITneHKe 

(BnWno~ee Ha c~opocre IIepeHOCa), TaK @in&i B o6aehte XGinKOCTW (BJIWUOUJee Ha 0611wfi 6anaHc 
MaCCbIri3HeprHH). 


